
z/VM

TCP/IP Diagnosis Guide

version 5 release 2

GC24-6123-01

���

z/VM

TCP/IP Diagnosis Guide

version 5 release 2

GC24-6123-01

���

Note!

Before using this information and the product it supports, read the information under “Notices” on page 257.

Second Edition (December 2005)

This edition applies to version 5, release 2, modification 0 of IBM z/VM (product number 5741-A05) and to all

subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces GC24-6023-00.

© Copyright International Business Machines Corporation 1987, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . xi

Who Should Read This Book . xi

How To Use This Book . xi

How Numbers Are Used in This Document xi

How the Term “internet” Is Used in This Document xi

How to Read Syntax Diagrams xi

What This Book Contains . xiii

Where to Find More Information xv

How to Send Your Comments to IBM xviii

Summary of Changes . xxi

GC24-6123-01, z/VM Version 5 Release 2 xxi

GC24-6123-00, z/VM Version 5 Release 1 xxi

GC24-6023-02, z/VM Version 4 Release 4 xxi

Networking support . xxi

GC24-6023-01, z/VM Version 4 Release 4 xxi

Equal-cost multipath support xxi

TCP/IP Stack Vulnerability Reduction xxi

Chapter 1. Diagnosis Overview 1

Chapter 2. Problem Identification 3

Categories that Help Identify the Problem 3

Abend . 4

Message . 4

Loop . 5

Wait State . 6

Incorrect Output . 6

Performance . 7

Documentation . 8

Guidelines for Machine Readable Documentation 9

Necessary Documentation . 10

Additional Documentation . 10

Problem Resolution . 11

Severe Problem Resolution 11

Customer Worksheet . 12

Problem Category . 12

Background Information . 12

Additional Information . 12

Chapter 3. TCP/IP VM Structures and Internetworking Overview 13

VM Structure . 13

Virtual Machines . 13

Virtual Machine Communication Facility 14

Inter-User Communication Vehicle 15

*CCS and Logical Device Service Facility 15

Overview of Internetworking 15

Bridges . 16

Maximum Transmission Unit (MTU) 17

Token Ring IEEE 802.5 . 17

IEEE 802.3 . 19

Ethernet - DIX V2 . 19

Sub-Network Access Protocol (SNAP) 19

© Copyright IBM Corp. 1987, 2005 iii

Internet Addressing . 20

Direct Routing . 23

Indirect Routing . 23

Simplified IP Datagram Routing Algorithm 24

Subnetting . 24

Simplified IP Datagram Routing Algorithm with Subnets 25

Static Routing . 26

Dynamic Routing . 27

Dynamic Routing Tables . 27

Example of Network Connectivity 28

Chapter 4. Server Initialization 29

CMS Servers . 29

Diagnosis Method 1 . 29

Diagnosis Method 2 . 29

GCS Servers . 30

Chapter 5. TCP/IP Procedures 31

TCP/IP Internals . 31

Internal Procedures . 31

Queues . 33

Internal Activities . 34

Input/Output . 38

HYPERchannel Driver . 38

IUCV Links . 39

Chapter 6. Diagnosing the Problem 43

Unable to Connect to TCP/IP Node 43

Description of the Problem 43

Symptom . 43

Problem Determination . 43

PING—Sending an Echo Request to a Foreign Host 44

Resolving the PING Command Problems 44

Failure of the HYPERchannel Interface 45

Description of the Problem 45

Symptom . 45

Problem Determination . 45

Recovery . 46

Failure of an SNA IUCV Connection 46

Description of the Problem 46

Symptom . 46

Problem Determination . 46

Recovery . 47

Chapter 7. TCP/IP Traces . 49

Debugging in VM . 49

Executing Traces . 49

Activating Traces . 49

First-Level Trace . 49

Second-Level Trace . 50

Directing Output . 51

Process Names . 52

Single Process Names . 52

Group Process Names . 99

Commonly Used Trace Options 106

Connection State . 112

iv z/VM: TCP/IP Diagnosis Guide

Connection State As Known by TCP 112

Connection State As Known by Pascal or VMCF Applications 114

Connection State As Known by Socket Applications 115

Traceroute Function (TRACERTE) 115

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 117

IPFORMAT Command Overview 117

IPFORMAT Command . 118

IPFORMAT Configuration File 119

Using IPFORMAT to View Packet Data 120

The Packet Summary View 120

The Packet Detail View . 122

IPFORMAT VIEW Function Keys 124

Packet Summary PF Keys 124

Packet Detail PF Keys . 125

IPFORMAT Subcommands . 126

FILTER Subcommand . 126

VIEW Subcommand . 128

HEADER Subcommand . 128

SAVE Subcommand . 129

APPEND Subcommand . 130

Chapter 9. FTP Traces . 133

FTP Connection . 133

FTP Client Traces . 134

Activating Traces . 134

Trace Output . 135

FTP Server Traces . 139

Activating Traces . 139

Trace Output . 140

Chapter 10. IMAP Server Diagnosis 145

IMAP Mail Flow . 145

Invoking Trace Activity on the IMAP Server 146

Trace Output . 146

Trace CODEFLOW . 146

Trace SOCKLIBCALLS . 148

Trace SOCKETIO . 149

Diagnosing Problems . 150

Problem - IMAP server fails during initialization with the following message:

DTCIMP5008E Error on socket call: PS_bind rc=13 150

Problem - Error 32 on socket call PS_write when a client disconnects . . . 150

Problem - Administrator command times out and Error QueueReplying to a

request: rc=8, rs=207 is displayed on the server’s console when the

command completes . 151

Problem - Clients attempt to connect to the IMAP server, and the server

never responds . 151

Problem - Error connecting to *SPL 151

Problem - Error rc=8 rs=11 on PS_applinit call 151

Problem - The IMAP server could not be started 151

Problem - The IMAP server is restarted by the stack at regular intervals 152

Reason Codes for Mail Sent to BADFILEID 152

Chapter 11. Simple Mail Transfer Protocol Traces 155

SMTP Client Traces . 155

Activating Traces . 155

Contents v

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Obtaining Queue Information 155

SMTP Server Traces . 156

Activating Traces . 156

Chapter 12. RPC Programs 163

General Information about RPC 163

RPC Call Messages . 163

RPC Reply Messages . 164

Accepted Reply Messages 164

Rejected Reply Messages 165

RPC Support . 166

Portmapper . 166

Portmapper Procedures . 166

Chapter 13. RouteD Diagnosis 167

Incoming Datagram RouteD Processing 168

Outgoing Datagram RouteD Generation 168

RouteD Route Table and Interface List 169

Diagnosing Problems . 169

Connection Problems . 169

PING Failures . 170

Incorrect Output . 171

Session Outages . 172

Activating RouteD Trace and Debug 172

RouteD Trace and Debug Commands 173

Purpose . 173

Operands . 173

Usage Notes . 173

RouteD Trace and Debug SMSG Commands 174

Purpose . 174

Operands . 174

Usage Notes . 175

Examples . 175

Trace Output . 175

Chapter 14. Diagnosing MPRoute Problems 181

Categorizing MPRoute Problems 181

Abends . 182

MPRoute Connection Problems 182

Routing Failures . 182

Using Privileged MPRoute SMSG Commands 183

MPRoute Traces and Debug Information 183

Starting MPRoute Tracing and Debugging from the z/VM Console 184

Starting MPRoute Tracing and Debugging using the SMSG Command 184

Destination of MPRoute Trace and Debug Output 186

Sample MPRoute Trace Output 186

Chapter 15. SSL Server Diagnosis 191

SSL component Flow . 192

Invoking Trace Activity on the SSL Server 193

Diagnosing Problems . 195

Symptom - The SSL server could not be started 195

Symptom - The SSL server is restarted by the stack at regular intervals 196

Symptom - The correct parameters are not being passed to the SSL server 196

Symptom - The inability to connect to an application server listening on a

secure port . 196

vi z/VM: TCP/IP Diagnosis Guide

Symptom - Connections close due to errors 197

Symptom - Incorrect input or output 197

Trace Output . 198

Trace Normal . 198

Trace Connections NODATA 198

Trace Connections DATA . 199

Trace FLOW . 199

Displaying Local Host Information 202

Chapter 16. Network File System 203

VM NFS Client Support . 203

Activating Traces for NFS Client 203

VM NFS Server Support . 203

NFS Protocol . 203

Mount Protocol . 203

PCNFSD Protocol . 203

General NFS Debugging Features 203

Activating Traces for NFS Server 205

Additional Trace Options . 206

Chapter 17. Remote Printing Traces 211

Remote Printing Client Traces 211

Activating Remote Printing Client Traces 211

Remote Printing Client Trace Output 211

Remote Printing Server Traces 214

Activating Remote Printing Server Traces 215

Remote Printing Server Trace Output 215

Chapter 18. Remote Execution Protocol Traces 221

Remote Execution Protocol Client Traces 221

Activating Remote Execution Protocol Client Traces 221

Remote Execution Protocol Client Trace Output 221

Remote Execution Protocol Server Traces 222

Activating Remote Execution Protocol Server Traces 222

Remote Execution Protocol Server Trace Output 223

Chapter 19. TFTP Client Traces 225

Activating Traces . 225

Trace Output . 225

Chapter 20. TFTPD Traces . 227

Activating Traces . 227

Trace Output . 227

Formats of TFTPD Trace Records 228

TFTPD Trace Codes: . 229

TFTPD Trace Entry: 1000 . 230

TFTPD Trace Entry: 1500 . 230

TFTPD Trace Entry: 2000 . 230

TFTPD Trace Entry: 2500 . 230

TFTPD Trace Entry: 3000 . 231

TFTPD Trace Entry: 3500 . 231

TFTPD Trace Entry: 4000 . 231

TFTPD Trace Entry: 4100 . 231

TFTPD Trace Entry: 4200 . 231

TFTPD Trace Entry: 4300 . 232

TFTPD Trace Entry: 5000 . 232

Contents vii

TFTPD Trace Entry: 5100 . 232

TFTPD Trace Entry: 5200 . 232

TFTPD Trace Entry: 6100 . 232

TFTPD Trace Entry: 6200 . 233

TFTPD Trace Entry: 6300 . 233

TFTPD Trace Entry: 6301 . 233

TFTPD Trace Entry: 6302 . 233

TFTPD Trace Entry: 6303 . 234

TFTPD Trace Entry: 6304 . 234

TFTPD Trace Entry: 6305 . 234

Chapter 21. BOOT Protocol Daemon (BOOTPD) Traces 235

Activating Traces . 235

Trace Output . 235

BOOTPD Trace Records . 236

Chapter 22. Dynamic Host Configuration Protocol Daemon (DHCPD)

Traces . 239

Activating Traces . 239

Trace Output . 239

DHCPD Trace Records . 239

Chapter 23. Hardware Trace Functions 243

PCCA Devices . 243

PCCA Block Structure . 243

CCW . 246

Matching CCW Traces and TCP/IP Traces 250

Appendix A. Return Codes 251

TCP/IP Return Codes . 251

UDP Error Return Codes . 252

Appendix B. Related Protocol Specifications 253

Notices . 257

Trademarks . 259

Glossary . 261

Bibliography . 279

Where to Get z/VM Books . 279

z/VM Base Library . 279

Overview . 279

Installation, Migration, and Service 279

Planning and Administration 279

Customization and Tuning 279

Operation . 279

Application Programming . 279

End Use . 280

System Diagnosis . 280

Books for z/VM Optional Features 280

Data Facility Storage Management Subsystem for VM 280

Directory Maintenance Facility 280

Performance Toolkit for VM 281

Resource Access Control Facility 281

Other TCP/IP Related Publications 281

viii z/VM: TCP/IP Diagnosis Guide

Index . 283

Contents ix

x z/VM: TCP/IP Diagnosis Guide

About This Book

This document is intended to provide information for diagnosing problems occurring

in the IBM® z/VM® Transmission Control Protocol/Internet Protocol (TCP/IP)

networks.

Who Should Read This Book

This book is intended to be used by system programmers or TCP/IP administrators

for diagnosing problems. You should use this book to:

v Analyze a problem in a TCP/IP for z/VM implementation

v Classify the problem as a specific type.

You should be familiar with TCP/IP and the protocol commands to use this book.

How To Use This Book

You should read this book when you want to diagnose and report problems that can

occur in TCP/IP networks.

How Numbers Are Used in This Document

In this book, numbers over four digits are represented in metric style. A space is

used rather than a comma to separate groups of three digits. For example, the

number sixteen thousand, one hundred forty-seven is written 16 147.

How the Term “internet” Is Used in This Document

In this book, an internet is a logical collection of networks supported by routers,

gateways, bridges, hosts, and various layers of protocols, which permit the network

to function as a large, virtual network.

Note: The term “internet” is used as a generic term for a TCP/IP network, and

should not be confused with the Internet, which consists of large national

backbone networks (such as MILNET, NSFNet, and CREN) and a myriad of

regional and local campus networks worldwide.

How to Read Syntax Diagrams

This section describes how to read the syntax diagrams in this book.

Getting Started: To read a syntax diagram, follow the path of the line. Read from

left to right and top to bottom.

v The ��─── symbol indicates the beginning of a syntax diagram.

v The ───� symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.

v The �─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.

v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

v Directly on the line (required)

v Above the line (default)

© Copyright IBM Corp. 1987, 2005 xi

v Below the line (optional).

 Syntax Diagram Description Example

Abbreviations:

Uppercase letters denote the shortest acceptable abbreviation. If an

item appears entirely in uppercase letters, it cannot be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any

combination.

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in

any combination of uppercase and lowercase letters.

�� KEYWOrd ��

Symbols:

You must code these symbols exactly as they appear in the syntax

diagram.

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

() Parentheses

. Period

Variables:

Highlighted lowercase items (like this) denote variables.

In this example, var_name represents a variable you must specify

when you code the KEYWORD command.

�� KEYWOrd var_name ��

Repetition:

An arrow returning to the left means that the item can be repeated.

A character within the arrow means you must separate repeated items

with that character.

A footnote (1) by the arrow references a limit that tells how many times

the item can be repeated.

��

�

repeat

��

��

�

 ,

repeat

��

��

�

(1)

repeat

��

Notes:

1 Specify repeat up to 5 times.

Required Choices:

When two or more items are in a stack and one of them is on the line,

you must specify one item.

In this example, you must choose A, B, or C.

�� A

B

C

 ��

xii z/VM: TCP/IP Diagnosis Guide

Syntax Diagram Description Example

Optional Choice:

When an item is below the line, the item is optional. In this example,

you can choose A or nothing at all.

When two or more items are in a stack below the line, all of them are

optional. In this example, you can choose A, B, C, or nothing at all.

��

A
 ��

��

A

B

C

 ��

Defaults:

Defaults are above the line. The system uses the default unless you

override it. You can override the default by coding an option from the

stack below the line.

In this example, A is the default. You can override A by choosing B or

C.

��
 A

B

C

��

Repeatable Choices:

A stack of items followed by an arrow returning to the left means that

you can select more than one item or, in some cases, repeat a single

item.

In this example, you can choose any combination of A, B, or C.

��

�

A

B

C

��

Syntax Fragments:

Some diagrams, because of their length, must fragment the syntax.

The fragment name appears between vertical bars in the diagram. The

expanded fragment appears in the diagram after a heading with the

same fragment name.

In this example, the fragment is named “A Fragment.”

�� A Fragment ��

A Fragment:

 A

B

C

What This Book Contains

Chapter 1, “Diagnosis Overview,” on page 1, describes basic problem determination

steps. A flow diagram shows the process to follow when determining problems.

Chapter 2, “Problem Identification,” on page 3, describes problem categories and

the structure of service support to help you solve your problems.

Chapter 3, “TCP/IP VM Structures and Internetworking Overview,” on page 13,

describes the structures of the TCP/IP implementation for z/VM and an overview of

Internetworking.

Chapter 4, “Server Initialization,” on page 29, describes the mechanism used to

start each TCP/IP server.

Chapter 5, “TCP/IP Procedures,” on page 31, describes TCP/IP internal procedures,

queues, and activities and input/output functions.

About This Book xiii

Chapter 6, “Diagnosing the Problem,” on page 43, provides information about

diagnosing TCP/IP problems. The chapter also provides a systematic approach to

solving TCP/IP problems.

Chapter 7, “TCP/IP Traces,” on page 49, describes how to activate traces and direct

trace output. The chapter also describes single and group processes.

Chapter 9, “FTP Traces,” on page 133, describes how to activate and interpret File

Transfer Protocol (FTP) traces.

Chapter 10, “IMAP Server Diagnosis,” on page 145, describes how to debug IMAP

problems and interpret IMAP server traces.

Chapter 11, “Simple Mail Transfer Protocol Traces,” on page 155, describes how to

activate and interpret Simple Mail Transfer Protocol (SMTP) traces.

Chapter 12, “RPC Programs,” on page 163, describes how to activate and interpret

Remote Procedure Call (RPC) traces.

Chapter 13, “RouteD Diagnosis,” on page 167, describes how to activate, debug,

and interpret RouteD traces, and diagnose problems.

Chapter 14, “Diagnosing MPRoute Problems,” on page 181, describes how to

activate, debug, and interpret OSP traces, and diagnose OSP problems.

Chapter 15, “SSL Server Diagnosis,” on page 191, describes how to debug SSL

problems and interpret SSL server traces.

Chapter 16, “Network File System,” on page 203, describes how to debug NFS

Server problems plus interpret NFS traces.

Chapter 17, “Remote Printing Traces,” on page 211, describes the tracing

capabilities available in the client and server functions provided with the Remote

Printing implementation in TCP/IP for z/VM.

Chapter 18, “Remote Execution Protocol Traces,” on page 221, describes the

tracing capabilities available in the client and server functions provided with the

Remote Printing implementation in TCP/IP for z/VM.

Chapter 19, “TFTP Client Traces,” on page 225, describes how to activate and

interpret TFTP client traces.

Chapter 20, “TFTPD Traces,” on page 227, describes how to activate and interpret

TFTPD traces.

Chapter 21, “BOOT Protocol Daemon (BOOTPD) Traces,” on page 235, describes

how to activate and interpret BOOTPD traces.

Chapter 22, “Dynamic Host Configuration Protocol Daemon (DHCPD) Traces,” on

page 239, describes how to activate and interpret DHCPD traces.

Chapter 23, “Hardware Trace Functions,” on page 243, describes how to activate

and interpret traces on PCCA devices. The chapter also provides samples of

Channel Control Word (CCW) traces.

Appendix A, “Return Codes,” on page 251, describes TCP/IP return codes.

xiv z/VM: TCP/IP Diagnosis Guide

Appendix B, “Related Protocol Specifications,” on page 253, describes the TCP/IP

RFCs.

This book also includes a glossary, a bibliography, and an index.

Where to Find More Information

The “Glossary” on page 261, defines terms used throughout this book associated

with TCP/IP communication in an internet environment.

For more information about related publications, see “Bibliography” on page 279.

Table 1 shows where to find specific information about TCP/IP for z/VM

applications, functions, and protocols.

 Table 1. Usage of TCP/IP for z/VM Applications, Functions, and Protocols

Applications, Functions, and

Protocols Topic Book

BOOTP Daemon (BOOTPD) Setting up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Planning and

Customization

Commands z/VM: TCP/IP Planning and

Customization

DHCP Daemon (DHCPD) Setting up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Planning and

Customization

Commands z/VM: TCP/IP Planning and

Customization

eXternal Data Representation (XDR) Usage z/VM: TCP/IP Programmer’s

Reference

File Transfer Protocol (FTP) Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Commands z/VM: TCP/IP User’s Guide

IMAP Setting up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Commands z/VM: TCP/IP Planning and

Customization

About This Book xv

Table 1. Usage of TCP/IP for z/VM Applications, Functions, and Protocols (continued)

Applications, Functions, and

Protocols Topic Book

Kerberos Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Programmer’s

Reference

Commands z/VM: TCP/IP User’s Guide

MPROUTE Setting Up the Server z/VM: TCP/IP Planning and

Customization

NETSTAT Usage z/VM: TCP/IP User’s Guide

Network Computing System (NCS) Setting Up NCS z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Programmer’s

Reference z/VM: TCP/IP User’s Guide

Network File System (NFS) Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

OSF/Motif** Usage z/VM: TCP/IP Programmer’s

Reference

PING Usage z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

z/VM: TCP/IP User’s Guide

Portmapper** Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Programmer’s

Reference

z/VM: TCP/IP User’s Guide

Remote Execution Protocol (REXEC) Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Remote Printing Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Remote Procedure Calls (RPC) Usage z/VM: TCP/IP Programmer’s

Reference

xvi z/VM: TCP/IP Diagnosis Guide

Table 1. Usage of TCP/IP for z/VM Applications, Functions, and Protocols (continued)

Applications, Functions, and

Protocols Topic Book

Resolver CMS Program Interface z/VM: TCP/IP Programmer’s

Reference

Configuration Parameters z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

RouteD Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

RPCGEN command Usage z/VM: TCP/IP Programmer’s

Reference

Simple Mail Transfer Protocol (SMTP) Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Interface to SMTP z/VM: TCP/IP Programmer’s

Reference

Simple Network Management Protocol

(SNMP)

Setting Up the Server and Agent z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

z/VM: TCP/IP User’s Guide

SNMP Distributed Program Interface

(DPI®)

Usage z/VM: TCP/IP Programmer’s

Reference

Socket Calls Usage z/VM: TCP/IP Programmer’s

Reference

Secure Socket Layer (SSL) Setting Up the Server z/VM: TCP/IP Planning and

Customization

Telnet Setting Up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Commands z/VM: TCP/IP User’s Guide

Trivial File Transfer Protocol (TFTP) Usage z/VM: TCP/IP User’s Guide

Commands z/VM: TCP/IP User’s Guide

About This Book xvii

Table 1. Usage of TCP/IP for z/VM Applications, Functions, and Protocols (continued)

Applications, Functions, and

Protocols Topic Book

Trivial File Transfer Protocol Daemon

 (TFTPD)

Setting up the Server z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP Planning and

Customization

Commands z/VM: TCP/IP Planning and

Customization

X Window System Usage z/VM: TCP/IP Programmer’s

Reference

X Window System GDDM® Support Setting Up the Interface z/VM: TCP/IP Planning and

Customization

TCP/IP for z/VM Program Directory

Usage z/VM: TCP/IP User’s Guide

Links to Other Online Books

If you are viewing the Adobe Portable Document Format (PDF) version of this

book, it may contain links to other books. A link to another book is based on

the name of the requested PDF file. The name of the PDF file for an IBM book

is unique and identifies both the book and the edition. The book links provided

in this book are for the editions (PDF names) that were current when the PDF

file for this book was generated. However, newer editions of some books (with

different PDF names) may exist. A link from this book to another book works

only when a PDF file with the requested name resides in the same directory

as this book.

How to Send Your Comments to IBM

IBM welcomes your comments. You can use any of the following methods:

v Complete and mail the Readers’ Comments form (if one is provided at the back

of this book) or send your comments to the following address:

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

v Send your comments by FAX:

– United States and Canada: 1-845-432-9405

– Other Countries: +1 845 432 9405

v Send your comments by electronic mail to one of the following addresses:

– Internet: mhvrcfs@us.ibm.com

– IBMLink™ (US customers only): IBMUSM10(MHVRCFS)

Be sure to include the following in your comment or note:

v Title and complete publication number of the book

xviii z/VM: TCP/IP Diagnosis Guide

v Page number, section title, or topic you are commenting on

If you would like a reply, be sure to also include your name, postal or email

address, telephone number, or FAX number.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

About This Book xix

xx z/VM: TCP/IP Diagnosis Guide

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change (in that edition only). Some product changes identified in this

summary may be provided through z/VM service by program temporary fixes

(PTFs) for authorized program analysis reports (APARs).

GC24-6123-01, z/VM Version 5 Release 2

This edition supports the general availability of z/VM Version 5 Release 2 (z/VM

V5R2).

Changes have been made for Internet Protocol Version 6 (IPv6.

GC24-6123-00, z/VM Version 5 Release 1

This edition supports the general availability of z/VM Version 5 Release 1 (z/VM

V5R1). This edition includes minor technical corrections and editorial changes.

GC24-6023-02, z/VM Version 4 Release 4

This edition contains supports the general availability of TCP/IP for z/VM Version 4

Release 4.0 (z/VM V4R4).

Networking support

OSD and QDIO traces were added to the ″TCP/IP Traces″ chapter. The OSD trace

provides information about control flows between z/VM TCP/IP and an OSA

Express device. The QDIO trace provides information about data flows between

z/VM TCP/IP and an OSA Express device.

GC24-6023-01, z/VM Version 4 Release 4

This edition supports the general availability of TCP/IP for z/VM Version 4 Release

3.0 (z/VM V4R3).

Equal-cost multipath support

Support has been added for equal-cost multipath which provides load balancing

support. The MPROUTE chapter has been updated explaining this support and

some examples have been updated as well.

TCP/IP Stack Vulnerability Reduction

Function has been added to improve the performance and reliability of the TCP/IP

stack by preventing more Denial-of-Service (DoS) attacks. These attacks include:

v Kiss-of-Death (KOD) — an IGMP based attack that depletes the stack’s large

envelopes

v KOX — a version of the KOD attack that also has source IP address spoofing

v Stream — an attack in which TCP packets are sent to the stack with no header

flags set

v R4P3D — an augmented version of the Stream attack

v Blat — a version of the Land attack that also has the URG flag turned on in the

TCP header and has the ability to incrementally spoof the source IP address

© Copyright IBM Corp. 1987, 2005 xxi

v SynFlood — an attack in which the initiator floods the TCP/IP stack with SYN

packets that have spoofed source IP addresses, resulting in the server never

receiving the final ACKs needed to complete the three-way handshake in the

connection process.

The Smurf DoS attack has also been updated to address three variants of the

attack. Smurf is a DoS attack in which an ICMP Echo Request is sent to a

broadcast or multicast address. The three variants are:

v Smurf-IC — where ″IC″ denotes that incoming packets are using the TCP/IP

stack to launch an attack

v Smurf-OB — where ″OB″ denotes that an outbound ICMP Echo Request

matched the description of a Smurf attack

v Smurf-RP — where ″RP″ denotes that ICMP Echo Reply packets being received

by the stack do not match any Echo Requests that were sent.

The DENIALOFSERVICE trace supports two levels of tracing—TRACE and

MORETRACE.

xxii z/VM: TCP/IP Diagnosis Guide

Chapter 1. Diagnosis Overview

To diagnose a problem suspected to be caused by TCP/IP for VM, you first identify

the problem, then determine if it is a problem with TCP/IP, and, finally, if it is a

problem with TCP/IP, gather information about the problem so that you can report

the source of the problem to the appropriate IBM service support group. With this

information available, you can work with service support representatives to solve

the problem. The object of this book is to help you identify the source of the

problem.

Figure 1 summarizes the procedure to follow to diagnose a problem. The text

following the figure provides more information about this procedure.

�1� Determine if the source of the problem is TCP/IP.

1

7

4

10

2

8

5

3

9

6

Diagnosis
Procedure

Is
problem

with
TCP/IP?

No

No

No

Yes

Yes

Yes

Go to the diagnosis
guide for the device
or application with
the problem.

Use information in
Chapter 2 to document
the problem.

Diagnosis task
is completed.

Report the problem
to the IBM service
support group.

IBM service support
group creates an APAR.

Solution is developed
by the IBM service
support group.

Apply the solution.

Does
IBM service

support group supply
a solution?

Is
problem

resolved?

Figure 1. Overview of the Diagnosis Procedure

© Copyright IBM Corp. 1987, 2005 1

Various messages outputed to the console, together with alerts and some

diagnostic aids provide information that helps you to find the source of a

problem. If the problem is with TCP/IP, go to Step �3�; otherwise, go to

Step �2�.

�2� Check appropriate books.

 Refer to the diagnosis guide of the hardware device or software application

that has the problem.

�3� Gather information.

 Refer to Chapter 2, “Problem Identification,” for a detailed explanation of

diagnostic procedures and how to collect information relevant to the

problem.

�4� Try to solve the problem.

 If you can solve the problem, go to Step �5�; otherwise, go to Step �6�.

�5� The diagnosis task is completed.

 The problem has been solved.

�6� Report the problem to service support.

 After you have gathered the information that describes the problem, report it

to service support. If you are an IBMLINK user, you can perform your own

RETAIN® searches to help identify problems. Otherwise, a representative

uses your information to build keywords to search the RETAIN database for

a solution to the problem. The object of this keyword search using RETAIN

is to find a solution by matching the problem with a previously reported

problem.

 You can also visit the VM TCP/IP homepage to view PSP as well as FAQ

information at http://www.ibm.com/s390/vm/related/tcpip/

�7� Work with support representatives.

 If a keyword search matches a previously reported problem, its solution

might also correct the problem. If so, go to Step �10�. If a solution to the

problem is not found in the RETAIN database, the service support

representatives will continue to work with you to solve the problem. Go to

Step �8�.

�8� Create an APAR.

 If service support does not find a solution, they may create an authorized

program analysis report (APAR) on the RETAIN database.

�9� A solution is developed by the support personnel.

 Using information supplied in the APAR, service support representatives

determine the cause of the problem and develop a solution for it.

�10� Apply the solution.

 Apply the corrective procedure supplied by the support personnel to correct

the problem. Go to Step �4� to verify that the problem is corrected.

Diagnosis Overview

2 z/VM: TCP/IP Diagnosis Guide

Chapter 2. Problem Identification

This chapter explains the categories that best describe a problem you might have

with TCP/IP. This chapter also describes how you can use Service Support and its

indexed database (RETAIN) to find the solution to your problem. You should review

this chapter before contacting any service support to help expedite a solution to

your problem.

Categories that Help Identify the Problem

There are seven general problem categories:

v Abend

v Message

v Loop

v Wait State

v Incorrect Output

v Performance

v Documentation.

For each category, this section provides you with:

v A description of the category

v A list of the documentation to be gathered

v Directions for preparing your findings and providing them for further service

support.

Problems that are related to installation, configuration, and general performance

should first be pursued through your marketing branch office. They have access to

facilities such as HONE, EQUAL, and the regional area Systems Centers, which

may be able to provide a resolution to the problem. The Program Directory and the

Preventive Service Planning (PSP) facility are also valuable sources of information

for these types of problems. PSP bucket information can be viewed on the TCP/IP

for z/VM home page at http://www.ibm.coms390/vm/related/tcpip/

In addition to the general categories previously listed, the following keywords can

be used to describe problems associated with TCP/IP. These keywords are used to

perform inquiries in RETAIN and in the licensed program, INFO/SYS:

v CLEAR/RESET

v DIAG/DIAGNOSTIC

v LAN

v LOCKED/HANG/HUNG

v RECFMS

v REJECT/FRMR

v SENSE

v INOP

v ETHERNET

v TOKEN-RING

v User ID names of server virtual machines

© Copyright IBM Corp. 1987, 2005 3

Abend

An abend occurs when TCP/IP unexpectedly terminates execution. In addition to

TCP/IP abends, Pascal and C runtime routines can abend.

An execution error in the Pascal runtime produces output similar to that shown in

Figure 2. The compile module is TCQUEUE and AMPX messages are Pascal runtime

errors.

For more information about Pascal execution errors, see the following books:

v VS Pascal Applications Programming Guide

v VS Pascal Language Reference.

Gather the Information

Gather the following documentation for your abend problem:

v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on page 9)

v Client or server dump, if applicable.

You might also need to gather the following documentation:

v TCP/IP initial configuration file (PROFILE TCPIP, or its equivalent)

v Dynamic configuration (OBEYFILE) files

v Console listing

v TCPIP DATA file

v Channel control word (CCW) trace with data

v TCP/IP trace

v Customized DTCPARMS file

v RSU Service Level

v For out-of-storage abends, the size of the virtual machine and the output from

the Query Segment command

Document the Problem

To determine if the abend is related to TCP/IP, look at your TCP/IP dump or console

log.

Message

The message problem category describes a problem identified by a message. If the

message starts with AMPX, the error is caused by an abend in the Pascal runtime.

For more information about Pascal execution errors, see “Abend.”

Gather the Information

Gather the following documentation for your message problem:

v Console log

 AMPX036I Assertion failure checking error

 TRACE BACK OF CALLED ROUTINES

 ROUTINE STMT AT ADDRESS IN MODULE

 PREPENDENVELOPE 7 000AAC02 QUEUES

 FROM1822 88 000EA58A FROM1822

 SCHEDULER 49 000BB5FC SCHEDULER

 -MAIN-PROGRAM- 5 00020130 TCPIP

 VSPASCAL 001103E2

Figure 2. Pascal Execution Error

Problem Identification, Reporting, and Resolution

4 z/VM: TCP/IP Diagnosis Guide

|
|

You might also need to gather the following documentation:

v Host CCW trace

v Virtual Machine TCP/IP dump

v TCP/IP trace.

Document the Problem

To prepare a message problem report, follow these steps:

1. Write down the following:

v The operation you tried to perform

v The results you expected

v The results you received.

2. Write down the entire content of the message or messages, including the

message identifier.

3. Give this information to your service support person when reporting your

problem.

Loop

If an operation, such as a message or printed output, repeats endlessly, TCP/IP

could be in a loop. Some indicators of a loop problem are:

v Slow response time

v No response at all

v Inordinately high CPU utilization by TCP/IP.

Gather the Information

Gather the following documentation for your loop problem:

v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on page 9)

v Branch Trace if appropriate.

You might also need to gather the following documentation:

v TCP/IP initial configuration file (PROFILE TCPIP, or its equivalent)

v Dynamic configuration (OBEYFILE) files

v TCPIP DATA file

v CCW trace

v TCP/IP trace.

Document the Problem

To prepare the loop problem report, complete the following steps:

1. Record the circumstances of the loop that indicate you have a problem.

2. Use the addresses obtained from the branch trace to locate routine name or

names, so you can determine where the loop occurs.

3. Contact the IBM service support group to report your problem. Provide the

following information:

v The symptoms that indicate you have a loop problem

v The maintenance level of your TCP/IP

v The contents of the branch trace

v The routine name or names where the loop occurs. This may be obtained

from a formatted dump.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 5

Wait State

If TCP/IP applications appear to hang and connected hosts report link time-outs on

their end, TCP/IP could be in a wait state. Some indicators of a wait state problem

are:

v Application programs cannot function or terminate

v Link time-outs are observed on connected hosts

v No communication with system console is possible

v No CPU utilization by TCP/IP is observed

v No response at all

v Traffic ceases through the network connections.

Gather the Information

Gather the following documentation for your wait state problem:

v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on page 9)

v Dump of the client or server virtual machine if appropriate.

You might also need to gather the following documentation:

v TCP/IP initial configuration file (PROFILE TCPIP, or its equivalent)

v Dynamic configuration (OBEYFILE) files

v TCPIP DATA file

v Virtual PSW value for the TCP/IP virtual machine

v Console log

v TCP/IP trace of events prior to the wait state occurring.

Document the Problem

To prepare the wait state problem report, complete the following steps:

1. Record the circumstances leading up to the wait state condition.

2. Use the module loadmap or the address portion of the virtual PSW value to

determine the routine name where the wait state is occurring.

3. Contact the IBM Support Center to report your problem. Provide the following

information:

v The symptoms that indicate you have a wait state problem

v The program levels where the wait state occurs

v The contents of any traces activated at the time the problem occurred

v The routine name indicated by the address portion of the PSW.

Incorrect Output

A TCP/IP incorrect output problem, such as missing, repeated, or incorrect data, is

an unexpected result received during regular network operation. Incorrect output is

the broadest problem category, and includes some of the following problems:

Problem Description

Activate Failure The inability to establish a connection with the

device.

Deactivate Failure The inability to end a connection that was

established with the device.

Load Failure Any problem that occurs during initialization.

Problem Identification, Reporting, and Resolution

6 z/VM: TCP/IP Diagnosis Guide

Dump Failure Any problem that causes the storage contents of

TCP/IP to be dumped or a Pascal trace back.

Device Failure The inability of a device to continue communication

using TCP/IP.

Gather the Information

Gather the following documentation for your incorrect output problem:

v The operation you tried to perform

v The results you expected

v The results you received.

You might also need to gather the following documentation:

v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on page 9)

v CCW trace

v The contents of any traces activated at the time of problem

v Console log

Document the Problem

Incorrect output problems are often caused by definition errors during TCP/IP

generation. Before you contact the IBM Support Center to report your problem,

check that all statements and their keywords were correctly specified for your

system during the generation process. After you confirm that all generation

definitions were correctly specified:

1. Prepare a description of the following:

v The operation you tried to perform

v The results you expected

v The results you received.

2. Give this information to the IBM Support Center when you call to report your

problem.

Performance

A performance problem is characterized by slow response time or slow throughput,

which can be caused by congestion in the network or a malfunction of an interface.

When you suspect that you have a performance problem, gather as much

information as possible about your system before and during the poor performance

times.

Performance problems are normally caused by:

v Over-utilization of the host

v Inappropriate prioritization of an application program within the host

v Over-utilization of the communication interface

v Malfunction in the host, communication controller, or network.

Gather the Information

Gather the following documentation for your performance problem:

v The operation you tried to perform

v The results you expected

v The results you received

v TCP/IP configuration files

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 7

You might also need to gather the following documentation:

v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on page 9)

v Console log

v CCW trace

v TCP/IP trace.

Document the Problem

To prepare a performance problem report:

1. Write a description of the following:

v The operation you tried to perform

v The results you expected

v The results you received.

2. Record any other characteristics about your operating environment during the

time of the performance problem. Some examples of these characteristics are:

v The time of day that the poor performance occurred.

v Any unique application programs that were running at the time of the

problem.

v The physical configuration of your network, especially the LAN interfaces or

the number of virtual circuits, such as X.25, involved.

v Any modifications made to your operating system, input/output (I/O)

generation, or the connection interface, such as virtual circuits for X.25 or the

local area network (LAN) configuration for LANs.

3. Check the console for messages.

Documentation

A TCP/IP documentation problem is defined as incorrect or missing information in

any of the TCP/IP books.

If the error interferes with TCP/IP operation, report the problem to your service

support. However, for comments or suggestions on the content of a TCP/IP book,

use the Readers’ Comment Form located at the back of the book. An e-mail

address is also provided for your convenience.

Gather the Information

Gather the following information for your documentation problem:

v The name and order number of the IBM publication in error

v The page number of the error

v The description of the problem caused by the error.

Document the Problem

Give the following information to your service support personnel when you report

your problem:

v The order and revision number of the book that contains the error.

The order and revision number appear on the front cover and title page of the

book in the form xxxx-xxxx-n. The xxxx-xxxx is the order number and n is the

revision number.

v Page numbers, figure numbers, chapter titles, section headings, and any other

information that pinpoints the location of the text that contains the error.

v A description of the problem caused by the documentation error.

Problem Identification, Reporting, and Resolution

8 z/VM: TCP/IP Diagnosis Guide

Guidelines for Machine Readable Documentation

If, after talking to the Level 2 Support Center representative about a problem, it is

decided that documentation should be submitted to the TCP/IP support team, it may

be more convenient for the customer and/or the TCP/IP support team that

documentation be submitted in machine readable form (that is, on tape) or else sent

over the network. Machine readable documentation can be handled most efficiently

by the IBM support person if it conforms to the following guidelines when creating

the tape (or tapes).

When preparing machine readable documentation for submission in a z/VM

environment, the following guidelines should be followed:

1. Dumps and traces should be submitted on tape.

v For dumps:

 The generation of dumps for the TCP/IP virtual machine (for program

checks) is controlled by a parameter on the ASSORTEDPARMS

statement in the PROFILE TCPIP file. Two possible formats are

supported:

- CPDUMP - tells TCP/IP to generate a dump using the CP DUMP

command.

- VMDUMP - tells TCP/IP to generate a dump using the CP VMDUMP

command.

If neither of these parameters is specified on the ASSORTEDPARMS

statement, TCP/IP suppresses the dump generation for program checks.

Use of the VMDUMP parameter presumes the availability of the Dump

Viewing Facility (DVF) at your installation. Refer to the CP Command

Reference for additional information on the two dump formats.

 Dumps generated for other error conditions will have a format specified by

the error processing routine that intercepted the error (such as the C

run-time library). These dumps will be in either the DUMP or VMDUMP

format.

 Dumps generated in the VMDUMP format must be processed by the

Dump Viewing Facility prior to submission. Refer to the Dump Viewing

Facility Operation Guide for information on processing VMDUMP

formatted dumps. When submitting dumps processed by the applicable

facility, be sure to include all of the files produced by the processing of the

dump (DUMP, REPORT, etc.). Dumps generated in the DUMP format

must be read from the system spool to disk (using the RECEIVE

command) prior to submission.

 Dump files may be transferred to tape using the VMFPLC2 command.

Refer to the Service Guide for VM for details on using VMFPLC2. Each

file dumped to tape should constitute a single tape file (that is, a tape

mark should be written after each file is dumped to tape).

v For TCP/IP Traces:

 TCP/IP trace files should be transferred to tape using the VMFPLC2

command. If multiple traces are being submitted, each trace file dumped

to tape should constitute a single tape file (that is, a tape mark should be

written after each file is dumped to tape).

Note: Use of any other utility (IBM or non-IBM) to transfer dumps or traces to

tape may result in a processing delay and could result in the APAR being

returned to the customer (closed RET) due to the inability of the change

team to process the tape.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 9

2. Submit other types of information (such as server virtual machine traces,

configuration files, console logs, etc.) on paper or tape. If submitted on tape, the

data should be written to tape using VMFPLC2 only, adhering to the

requirement that each file dumped to tape is followed by a tape mark.

3. Write at least ten tape marks after the last file to ensure the load processing

correctly recognizes the end of the tape and does not spin off the end off the

reel.

4. Tapes that are submitted to the TCP/IP support team must be non-label (nl).

Cartridge (3490) or reel tapes may be used. Each tape should contain an

external label to identify the tape and its contents in some way. The problem

number/apar number should appear on the label. If multiple tapes are used, a

separate explanation should be included itemizing the contents of each tape.

5. Generate a map of the tape (or tapes) to be submitted using the VMFPLC2

SCAN command and include the hard copy output of that scan with the tapes.

Necessary Documentation

Before you call for IBM service support, have the following information available:

Information Description

Customer Number The authorization code that allows you to use

service support. Your account name, and other

customer identification should also be available.

Problem Number The problem number previously assigned to the

problem. If this is your first call about the problem,

the support center representative assigns a number

to the problem.

Operating System The operating system and level that controls the

execution of programs.

Component ID A number that is used to search the database for

information specific to TCP/IP. If you do not give

this number to the support center representative,

the amount of time taken to find a solution to your

problem increases.

Release Number An identification number that is on each TCP/IP

release.

 Table 2. TCP/IP Component ID Number

Licensed IBM Program Product Component ID Number

TCP/IP (VM) 5735FAL00

A complex problem might require you to talk to a number of people when you report

your problem to service support. Therefore, you should keep all the information that

you have gathered readily available.

Note: You might want to keep the items that are constantly required, such as the

TCP/IP component ID, or VM operating system release level in a file for

easy access.

Additional Documentation

The service support representative might ask you to furnish the following additional

items:

Problem Identification, Reporting, and Resolution

10 z/VM: TCP/IP Diagnosis Guide

v The failing CPU type

v The communication interface, such as X.25 using NPSI or a LAN bridge

v The system fixes and changes.

Have a list of all program temporary fixes (PTFs) and authorized program

analysis report (APAR) fixes that have been applied to your system. You should

also have a list of any recent changes made to your system, such as user

program modifications, redefinition of statements in system generation, or a

change of parameters used to start the system.

v Documentation list

Prepare a list of all documentation that you use to operate your system and any

documentation used to locate or fix the problem.

v System configuration

System configuration information includes:

– TCPIP DATA file

– TCPIP PROFILE file

– Configuration statements for clients or servers

– Problem type

TCP/IP problems are described by one or more of the following categories:

- Abend

- Message

- Loop

- Wait State

- Incorrect Output

- Performance

- Documentation.

“Categories that Help Identify the Problem” on page 3 explains how to use

these categories when reporting your problem.

Problem Resolution

The service support representative uses the information that you provide to create a

list of categories describing your problem.

The program specialist examines all the information that has been compiled, refines

your problem definition, and attempts to solve the problem. If a solution is not found

in RETAIN or through other sources, the program specialist writes an APAR. A

number is assigned to the APAR. The APAR allows the support group to examine

your problem more closely and develop a solution. Once the solution is developed

and tested, it is entered into RETAIN and sent to you. RETAIN is kept current with

new solutions and error descriptions so that future similar problems can be resolved

through a problem category search.

Severe Problem Resolution

If your problem is so severe that it must be resolved immediately, you should work

closely with a program specialist to help develop a quick solution.

You need to provide the specialist with detailed problem information. Answer

questions and follow procedures directed by the program specialist so that a

possible quick temporary fix can be developed for your problem.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 11

Customer Worksheet

You, the customer may wish to fill out an informal worksheet to use as a reference

before calling for support. By completing this worksheet before calling for support,

you will save time and help expedite your fix.

The following Problem Category topic along with the references in Chapter 2,

“Problem Identification,” should be reviewed before you call for service support.

Problem Category

Determine within which of the following categories your problem falls:

Category Description

Abend An abend occurs when TCP/IP unexpectedly stops processing.

These problems are explained in “Abend” on page 4.

Message The message problem category describes a problem identified by a

message. These problems are explained in “Message” on page 4.

Loop Loop problems refer to an operation that repeats endlessly. These

problems are explained in “Loop” on page 5.

Wait State Wait state problems refer to situations where TCP/IP (or possibly

specific servers) fail to respond to requests for service and no

activity takes place in the address space or virtual machine of the

affected server. These problems are explained in “Wait State” on

page 6.

Incorrect Output

An incorrect output problem, such as missing, repeated, or incorrect

data, is an unexpected result received during regular network

operation. These problems are explained in “Incorrect Output” on

page 6.

Performance A performance problem is characterized by slow response time or

slow throughput. These problems are explained in “Performance” on

page 7.

Documentation

A documentation problem is defined as incorrect, missing, or

ambiguous information in any of the TCP/IP books. These problems

are explained in “Documentation” on page 8.

Background Information

After determining the problem category and reviewing the section referring to that

category, you must gather the required information regarding your problem. Each

problem category detailed in this chapter contains a section called “Gather the

Information”. See this section to determine the appropriate information you will need

to obtain.

Additional Information

Some additional information may be required. See “Additional Documentation” on

page 10, to determine if you need more information.

Problem Identification, Reporting, and Resolution

12 z/VM: TCP/IP Diagnosis Guide

Chapter 3. TCP/IP VM Structures and Internetworking

Overview

This chapter describes the TCP/IP implementation for VM. It also provides an

overview of networking or internetworking as background information.

VM Structure

Figure 3 represents the TCP/IP layered architecture for the VM environment.

Virtual Machines

In VM, most TCP/IP servers and clients are virtual machines. Each server and client

is implemented as an independent virtual machine.

A request for service is sent to the appropriate virtual machine for processing and

then forwarded to the appropriate destination. The destination can be the TCP/IP

virtual machine if the request is outgoing, or a user’s CMS virtual machine if the

request is incoming.

The configuration and initialization steps for typical CMS type servers is shown in

figure Figure 4 on page 14.

CMS
User LPD

CP

CP

LDSF
CCS

Telnet FTP TFTP SMTP DNS SNMP NFS BOOTPD DHCPD TFTPD Kerberos LPR RouteD
MPROUTE

X Window System RPC REXEC SSL IMAP

X Toolkit GDDMXD

VMCF

VMCF

Figure 3. The TCP/IP Layered Architecture for VM

© Copyright IBM Corp. 1987, 2005 13

where :

�1� PROFILE EXEC on 191 accesses required disks

�2� PROFILE EXEC calls TCPRUN EXEC

�3� Locate server and server class definitions in DTCPARMS files

�4� Call any server and global exits with SETUP parameters

�5� Prepare the execution environment, issuing any needed CP and CMS

commands

�6� Calls any server and global exits with BEGIN parameters

�7� Run the server

�8� Call any server and global exits with END parameters

�9� Return to CMS or logoff

TCPRUN EXEC may also call the exits with the ADMIN or ERROR parameters if

the server cannot be started due to administration or problems.

Virtual Machine Communication Facility

The Virtual Machine Communication Facility (VMCF) is used by virtual machines for

communication. Because the TCPIP virtual machine has all of the physical

interfaces, all communication input/output (I/O) requests are sent to TCPIP for

execution.

Inbound data comes into the TCPIP virtual machine and is sent through VMCF to

the destination virtual machine. The routing for inbound data is chosen on the basis

of the virtual machine that is communicating with the destination.

1Server
191

TCPMAINT
591 or 198

General
PROFILE

EXEC

Server's Exit EXEC

Global Exit EXEC

Setup

PrepareTCPRUN EXEC

DTCPARMS

CMS or
LOGOFFSERVER'S MAIN ROUTINE

Begin End

2

4

5

3

7

8

9

6

Figure 4. The sequence of a Server Startup

TCP/IP Structures in VM

14 z/VM: TCP/IP Diagnosis Guide

Inter-User Communication Vehicle

All communication that uses the current socket interface uses the Inter-User

Communication Vehicle (IUCV) interface. For example, the Remote Procedure Call

(RPC) uses the socket interface and, therefore, RPC communication uses IUCV to

communicate with virtual machines.

*CCS and Logical Device Service Facility

*CCS is used for communication between Telnet and a user’s CMS virtual machine.

This line-mode interface permits requests to be passed between the user and

Telnet virtual machines.

When a user requires a full-screen interface, the Logical Device Service Facility

(LDSF) is used. This interface simulates a 3270 device on the user’s virtual

machine, thereby relieving TCP/IP of the need to create a full-screen interface.

Overview of Internetworking

Networking in the TCP/IP world consists of connecting different networks so that

they form one logical interconnected network. This large overall network is called an

internetwork, or more commonly, an internet. Each network uses its own physical

layer, and the different networks are connected to each other by means of

machines that are called internet gateways or simply gateways.

Note: This definition of a gateway is very different from the one used in general

network terms where it is used to describe the function of a machine that

links different network architectures. For example, a machine that connects

an OSI network to an SNA network would be described as a gateway.

Throughout this chapter, the TCP/IP definition of a gateway is used.

Figure 5 shows a simple internet with a gateway.

The function provided by these gateways is to transfer IP datagrams between the 2

networks. This function is called routing and because of this the internet gateways

are often called routers. Within this chapter, the terms router and gateway are

synonymous; both refer to a machine that transfers IP datagrams between different

networks.

Internet A

Internet
Gateway

Network 2

Network 1

Figure 5. Networks with a Gateway Forming an Internet

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 15

The linking of the networks in this way takes place at the International Organization

for Standardization (ISO) network level. It is possible to link networks at a lower

layer level using bridges. Bridges link networks at the ISO data link layer. Bridges

pass packets or frames between different physical networks regardless of the

protocols contained within them. An example of a bridge is the IBM 8209, which can

interconnect an Ethernet network and a Token-Ring network.

Note: A bridge does not connect TCP/IP networks together. It connects physical

networks together that will still form the same TCP/IP network. (A bridge

does not do IP routing.)

Figure 6 depicts a router and a bridge. The router connects Network 1 to Network 2

to form an internet.

Bridges

Bridges are not within the scope of this document; however, there are some

aspects of bridging that have a direct effect on TCP/IP networks, particularly in the

area of IP routing. This is very important because if IP datagrams are not passed

properly over a bridge, none of the higher TCP/IP protocols or applications will work

correctly.

Network 1

Router

Bridge

Token Ring

Ethernet

Bridge

Token Ring Token Ring

Network 2

Internet A

Figure 6. Routers and Bridges within an Internet

TCP/IP Structures in VM

16 z/VM: TCP/IP Diagnosis Guide

Maximum Transmission Unit (MTU)

Different physical networks have different maximum frame sizes. Within the different

frames, there is a maximum size for the data field. This value is called the

maximum transmission unit (MTU), or maximum packet size in TCP/IP terms.

Figure 7 shows the relationship of MTU to frame size.

If an IP datagram is to be sent out onto the network and the size of the datagram is

bigger than the MTU, IP will fragment the datagram, so that it will fit within the data

field of the frame. If the MTU is larger than the network can support, then the data

is lost.

The value of MTU is especially important when bridging is used because of the

different network limits. RFC 791 - Internet Protocols states that all IP hosts must

be prepared to accept datagrams of up to 576 bytes. Because of this, it is

recommended that an MTU of 576 bytes be used if bridging (or routing) problems

are suspected.

Note: MTU is equivalent to the PACKET SIZE value on the GATEWAY statement,

or the MAXMTU value when using BSDROUTINGPARMS in the TCPIP

PROFILE file.

Token Ring IEEE 802.5

When a token-ring frame passes through a bridge, the bridge adds information to

the routing information field (RIF) of the frame (assuming that the bridge supports

source route bridging). The RIF contains information concerning the route taken by

the frame and, more importantly, the maximum amount of data that the frame can

contain within its data field. This is called the maximum information field (I-field).

The value specified for the maximum I-field is sometimes referred to as the largest

frame size, but this means the largest frame size excluding headers. See Figure 8

on page 18 for details on the relationship of the I-field to the header fields.

Note: It is important to be aware that IBM’s implementation limits the number of

bridges through which a frame can be passed to 7. An attempt to pass a

frame through an eighth bridge will fail.

Media Access Control Header Data

Maximum Frame Size

DataLogical Link Control Header

Media Access Control Sublayer

Logical Link
Control Sublayer

Data Link

Network Protocol

IPICMP

RARP

ARP

Figure 7. Relationship of MTU to Frame Size

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 17

The maximum I-field is always decreased by a bridge when it cannot handle the

value specified. So, for a given path through several token-ring bridges, the

maximum I-field is the largest value that all of the bridges will support. This value is

specified in the Routing Control (RC) field within the RIF as shown in Figure 8.

The size of the MTU is the maximum amount of data that is allowed within a frame.

The token-ring architecture specifies the maximum value of the I-field in the data

frame, which corresponds to the maximum size of the L-PDU. The maximum I-field

is determined by the bit configuration in the RC field, and is present in all routed

frames.

Table 3 shows the relationship between the RC field and the maximum I-field

values.

 Table 3. Relationship between RC Field and Maximum I-Field Value

Routing Control Field Maximum I-Field in Bytes

x000 xxxx xxxx xxxx 516

x001 xxxx xxxx xxxx 1500

x010 xxxx xxxx xxxx 2052

x011 xxxx xxxx xxxx 4472

x100 xxxx xxxx xxxx 8144

x101 xxxx xxxx xxxx 11 407

x110 xxxx xxxx xxxx 17 800

In Figure 8, we can see that, within the L-PDU, the Logical Link Control (LLC)

header uses 8 bytes, and so the MTU value is 8 bytes less that the maximum

I-field. (Note that the L-PDU contains a SNAP header, as described in

“Sub-Network Access Protocol (SNAP)” on page 19) This is how to calculate the

MTU for a token ring. The token-ring bridges always adjust the value of the

maximum I-field to that of the smallest one in the path. You should always ensure

that the MTU value is less than the value specified by the bridge.

Typically, within a 4Mbps token-ring network, the value of maximum I-field will be

2052 bytes, and so the MTU would be set to 2044 bytes (2052 minus 8 bytes for

the LLC header).

SD AC FC DA SA RI L-PDU FCS ED FS Data Frame

Routing
Control

DSAP SSAP CONT P_id Type Data

1 1 1 6 6 4 1 1 byte

2 2 bytes

Segment
Number . . .

I-Field

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 8. Format of an IEEE 802.5 Token-Ring Frame

TCP/IP Structures in VM

18 z/VM: TCP/IP Diagnosis Guide

IEEE 802.3

The frame used in IEEE 802.3 Ethernet networks is shown in Figure 9.

The maximum size of the L-PDU for a 10Mbps network is 1500 bytes. Because 8

bytes are used within the L-PDU for the LLC header, this means that the maximum

size of the data field is 1492 bytes. Therefore, the MTU for IEEE 802.3 networks

should be set to 1492 bytes.

Ethernet - DIX V2

The frame used in DIX Ethernet networks is shown in Figure 10.

There is no LLC data in an Ethernet V2 frame. The maximum size for the frame is

1526 bytes. This means that the data field can be 1500 bytes maximum. The MTU

for Ethernet V2 can be set to 1500 bytes.

It is possible to bridge Ethernet V2 frames to either IEEE 802.3 or IEEE 802.5

networks; a LLC header is added or removed from the frame, as required, as part

of the conversion when bridging.

Sub-Network Access Protocol (SNAP)

The TCP/IP software provides protocol support down to the ISO network layer.

Below this layer is the data link layer, which can be separated into two sublayers.

These are the Logical Link Control (LLC) and the Media Access Control (MAC)

layers.

The IEEE 802.2 standard defines the LLC sublayer, and the MAC sublayer is

defined in IEEE 802.3, IEEE 802.4, and IEEE 802.5.

The format of an IEEE 802.2 LLC header with the SNAP header is shown in

Figure 11 on page 20.

Pre SD DA SA LEN L-PDU PAD FCS Data Frame

DSAP SSAP CONT P_id Type Data

7 1 6 6 2 4

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 9. Format of an IEEE 802.3 Frame

Pre SD DA SA Type Data FCS Data Frame

8 6 6 6 2 n 4

Figure 10. Format of an Ethernet V2 Frame

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 19

The values of the fields in the LLC header when a SNAP header is used are

specified in RFC 1042 - Standard for Transmission of IP Datagrams over IEEE 802

Networks. The values specified are:

Field Value

DSAP X'AA'

SSAP X'AA'

CONT X'03' Specifies unnumbered information (UI)

P_id X'00 00 00'

Type X'08 00' - IP

X'08 06' - ARP

X'08 35' - RARP

Internet Addressing

Hosts on an internet are identified by their IP address. Internet Protocol (IPv4 and

IPv6) is the protocol that is used to deliver datagrams between these hosts. It is

assumed the reader is familiar with the TCP/IP protocols. Specific information

relating to the Internet Protocol can be found in RFC 791 (IPv4) and RFC 2460

(IPv6).

IPv4 Addressing

An IPv4 address is a 32-bit address that is usually represented in dotted decimal

notation, with a decimal value representing each of the 4 octets (bytes) that make

up the address. For example:

 00001001010000110110000100000010 32-bit address

 00001001 01000011 01100001 00000010 4 octets

 9 67 97 2 dotted decimal notation (9.67.97.2)

The IP address consists of a network address and a host address. Within the

internet, the network addresses are assigned by a central authority, the Network

Information Center (NIC). The portion of the IPv4 address that is used for each of

these addresses is determined by the class of address. There are four commonly

used classes of IPv4 address (see Figure 12).

DSAP SSAP CONT P_id Type Data

SNAP Header

1 1 1 3 2

LLC with SNAP Header

Figure 11. SNAP Header

32-bit IP Address
Class A:

Class B:

Class C:

Class D:

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
Host

Host

Host

Net

Multicast Group ID

Net

Net

1110

Figure 12. Classes of IP Addresses

TCP/IP Structures in VM

20 z/VM: TCP/IP Diagnosis Guide

|
|

|
|

|
|

|

|

The class of address of the IPv4 network is determined from the first 4 bits in the

first octet of the IP address. Figure 13 shows how the class of address is

determined.

As shown in Figure 13, the value of the bits in the first octet determine the class of

address, and the class of address determines the range of values for the network

and host segment of the IP address. For example, the IP address 9.67.97.2 would

be a class A address, since the first 2 bits in the first octet contain B'00'. The

network part of the IP address is “9” and the host part of the IP address is

“67.97.2”.

Refer to RFC 1166 - Internet Numbers for more information about IP addresses.

Refer to RFC 1060 - Assigned Numbers for more information about reserved

network and host IP addresses, such as a network broadcast address.

IPv6 Addressing

One problem that IPv6 solves is the limited number of addresses available in IPv4.

IPv6 uses a 128-bit address space, which has no practical limit on global

addressability and provides 340 282 366 920 938 463 463 374 607 431 768 211

456 addresses. Currently, this is enough addresses so that every person can have

a single IPv6 network with as many as 18 000 000 000 000 000 000 nodes on it,

and still the address space would be almost completely unused.

There are three conventional forms for representing IPv6 addresses as text strings:

v The preferred form is x:x:x:x:x:x:x:x, where the x’s are the hexadecimal values of

the eight 16-bit pieces of the address.

FE80:0000:0000:0000:0001:0800:23e7:f5db

1080:0:0:0:8:800:200C:417A

It is not necessary to write the leading zeros in an individual field, but there must

be at least one numeral in every field (except for the case described in the

following bullet).

v Due to some methods of allocating certain styles of IPv6 addresses, it will be

common for addresses to contain long strings of zero bits. In order to make

writing addresses containing zero bits easier, a special syntax is available to

 32-bit address xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

 Class A 0xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

 min 00000000

 max 01111111

 range 0 - 127 (decimal notation)

 Class B 10xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

 min 10000000

 max 10111111

 range 128 - 191 (decimal notation)

 Class C 110xxxxx xxxxxxxx xxxxxxxx xxxxxxxx

 min 11000000

 max 11011111

 range 192 - 223 (decimal notation)

 Class D 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx

 min 11100000

 max 11101111

 range 224 - 239.255.255.255

Figure 13. Determining the Class of an IP Address

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 21

|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

compress the zeros. The use of :: indicates multiple groups of 16 bits of zeros.

The :: can only appear once in an address. The :: can also be used to compress

both leading and trailing zeros in an address.

The following is a preferred form address:

1080:0:0:0:8:800:200C:417A

FF01:0:0:0:0:0:0:101

0:0:0:0:0:0:0:1

0:0:0:0:0:0:0:0

The corresponding compressed forms are:

1080::8:800:200C:417A

FF01::101

::1

::

v An alternative form that is sometimes more convenient when dealing with a

mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x’s

are the hexadecimal values of the 6 high-order 16-bit pieces of the address, and

the d’s are the decimal values of the 4 low-order 8-bit pieces of the address

(standard IPv4 representation) This form is used for IPv4-compatible IPv6

addresses and IPv4-mapped IPv6 addresses. These types of addresses are

used to hold embedded IPv4 addresses in order to carry IPv6 packets over the

IPv4 routing infrastructure.

0:0:0:0:0:0:13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

The same addresses in compressed form are:

::13.1.68.3

::FFFF:129.144.52.38

As important as the expanded address space is the use of hierarchical address

formats. The IPv4 addressing hierarchy includes network and host components in

an IPv4 address. IPv6, with its 128-bit addresses, provides globally unique and

hierarchical addressing based on prefixes rather than address classes, which

keeps routing tables small and backbone routing efficient.

The general format is as follows:

 Table 4. IPv6 Address Format

global routing prefix subnet ID interface ID

n bits m bits 128-(n+m) bits

The global routing prefix is a value (typically hierarchically structured) assigned to

a site; the subnet ID is an identifier of a link within the site; and the interface ID

is a unique identifier for a network device on a given link (usually automatically

assigned).

For more information on IPv6 addresses, prefixes and routing refer to the z/VM:

TCP/IP User’s Guide.

IP Routing

IP routing is based on routing tables held within a router or internet host. These

tables can either be static or dynamic. Typically, static routes are predefined within

a configuration file, and dynamic routes are “learned” from the network, using a

routing protocol.

 Figure 14 on page 23 shows a simple network with a bridge and a router.

TCP/IP Structures in VM

22 z/VM: TCP/IP Diagnosis Guide

|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|

|

||

|||

|||
|

|
|
|
|

|
|

Machine D is acting as an IP router and will transfer IP datagrams between the

class C, 192.9.200, network and the class A, 9, network. It is important to note that

for Machine B to communicate with Machine C using TCP/IP, both Machine D and

the bridge have to be correctly configured and working.

Direct Routing

Direct routing can take place when two hosts are directly connected to the same

physical network. This can be a bridged token-ring network, a bridged Ethernet, or

a bridged token-ring network and Ethernet. The distinction between direct routing

and indirect routing is that with direct routing an IP datagram can be delivered to

the remote host without subsequent interpretation of the IP address, by an

intermediate host or router.

In Figure 14, a datagram travelling from Machine A to Machine B would be using

direct routing, although it would be traveling through a bridge.

Indirect Routing

Indirect routing takes place when the destination is not on a directly attached IP

network, forcing the sender to forward the datagram to a router for delivery.

192.9.200.1

192.9.200.2

9.67.32.1

Bridge

Ethernet

Machine A

TCP/IP

Machine D

TCP/IP

LAN
Segment 001

9.67.32.2

192.9.200.3

Machine B

TCP/IP

Machine C

TCP/IP

LAN
Segment 002

Figure 14. Routing and Bridging

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 23

In Figure 14 on page 23, a datagram from Machine A being delivered to Machine C

would be using indirect routing, with Machine D acting as the router (or gateway).

Simplified IP Datagram Routing Algorithm

To route an IP datagram on the network, the algorithm shown in Figure 15 is used.

Using this general routing algorithm, it is very easy to determine where an IP

datagram will be routed. Following is a simple example based on the configuration

shown in Figure 14 on page 23.

 Machine A IP Address = 192.9.200.1

 Routing Table

 Destination Gateway

 192.9.200.1 192.9.200.1 (Machine A’s network interface)

 9.0.0.0 192.9.200.2 (Route to the 9.n.n.n address is

 via Machine D, 192.9.200.2)

Machine A sends a datagram to host 192.6.200.3 (Machine B), using the direct

route, 192.9.200.1 (its own network interface). Machine A sends a datagram to host

9.67.32.2 (Machine C), using the indirect route, 192.9.200.2 (Machine D), and

Machine D then forwards the datagram to Machine C.

Subnetting

A variation of the network and host segments of an IP address, known as

subnetting, can be used to physically and logically design a network. For example,

an organization can have a single internet network address (NETID) that is known

to users outside the organization, yet configure its internal network into different

departmental subnets. Subnetwork addresses enhance local routing capabilities,

while reducing the number of network addresses required.

To illustrate this, let us consider a simple example. Assume that we have an

assigned class C network address of 192.9.200 for our site. This would mean that

we could have host addresses from 192.9.200.1 to 192.9.200.254. If we did not use

subnetting, then we could only implement a single IP network with 254 hosts. To

split our site into two logical subnetworks, we could implement the following network

scheme:

Does
destination IP

network address
equal

my IP network
address?

Send IP datagram to
gateway corresponding
to destination IP address.

Send IP datagram
on local network.

Yes

No

Figure 15. General IP Routing Algorithm

TCP/IP Structures in VM

24 z/VM: TCP/IP Diagnosis Guide

Without Subnetting:

 Network Host Address

 Address Range

 192 9 200 host

 11000000 00001001 11001000 xxxxxxxx 192.9.200 1 - 254

 With Subnetting:

 Subnet Host Address Subnet

 Address Range Value

 192 9 200 64 host

 11000000 00001001 11001000 01xxxxxx 192.9.200.64 65 - 126 01

 Subnet Host Address Subnet

 Address Range Value

 192 9 200 128 host

 11000000 00001001 11001000 10xxxxxx 192.9.200.128 129 - 190 10

 The subnet mask would be

 255 255 255 192

 11111111 11111111 11111111 11000000

Notice that there are only two subnets available, because subnets B'00' and B'11'

are both reserved. All 0’s and all 1’s have a special significance in internet

addressing and should be used with care. Also notice that the total number of host

addresses that we can use is reduced for the same reason. For instance, we

cannot have a host address of 16 because this would mean that the subnet/host

segment of the address would be B'0001000', which with the subnet mask we are

using, would mean a subnet value of B'00', which is reserved.

The same is true for the host segment of the fourth octet. A fourth octet value of

B'01111111' is reserved because, although the subnet of B'01' is valid, the host

value of B'1' is reserved.

Each bit of the network segment of the subnet mask is always assumed to be 1, so

each octet has a decimal value of 255. For example, with a class B address, the

first 2 octets are assumed to be 255.255.

Simplified IP Datagram Routing Algorithm with Subnets

The algorithm to find a route for an IP datagram, when subnetting is used, is similar

to the one for general routing with the exception that the addresses being compared

are the result of a logical AND of the subnet mask and the IP address.

For example:

 IP address: 9.67.32.18 00001001 01000011 00100000 00010010

 <AND>

 Subnet Mask: 255.255.255.240 11111111 11111111 11111111 11110000

 Result of

 Logical AND: 9.67.32.16 00001001 01000011 00100000 00010000

The subnet address is 9.67.32.16, and it is this value that is used to determine the

route used.

Figure 16 on page 26 shows the routing algorithm used with subnets and Figure 17

on page 26 shows how a subnet route is resolved.

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 25

Static Routing

Static routing, as the name implies, is defined within the local host, and as changes

to the network occur, must be manually changed. Typically, a configuration file will

contain the definitions for directly-attached networks, routes for specific hosts, and a

possible default route that directs packets to a destination for networks that are not

previously defined.

TCP/IP uses the GATEWAY statements, defined in the TCPIP PROFILE file, to

configure the internal routing tables. The internal routing tables for TCP/IP can be

modified by using the OBEYFILE command. Refer to the TCP/IP Planning and

Customization for details about defining the GATEWAY statements and using the

OBEYFILE command.

Note: When the GATEWAY statements are updated using OBEYFILE, all

previously-defined routes are discarded and replaced by the new GATEWAY

definitions.

Yes

No

Does
destination IP

address ANDed with
my subnet mask equal
my IP address ANDed

with my subnet
mask?

Send IP datagram to
gateway corresponding
to the destination IP
address ANDed with my
subnet mask.

Send IP datagram
on local network.

Figure 16. Routing Algorithm with Subnets

Datagram sent to gateway 9.67.32.32

IP datagram with
Destination IP address = 9.67.32.34

arrives at Machine A (9.67.32.17)

Machine A’s Routing Table

Destination

9.67.32.17 9.67.32.16 255.255.255.240
9.67.32.24 9.67.32.32 255.255.255.240

Gateway Subnet mask

00001001 01000011 00100000 00100010
9 67 32 34

11111111 11111111 11111111 11110000
255 255 255 240

00001001 01000011 00100000 00100000
9 67 32 32

<AND>

Figure 17. Example of Resolving a Subnet Route

TCP/IP Structures in VM

26 z/VM: TCP/IP Diagnosis Guide

Dynamic Routing

Dynamic routing is the inverse of static routing. A TCP/IP protocol is used to

dynamically update the internal routing tables when changes to the network occur.

TCP/IP uses the Routing Information Protocol (RIP) and the RouteD virtual machine

to monitor network changes. The TCP/IP Planning and Customization contains

more details about RouteD.

Note: When you use RouteD, the GATEWAY statements must be commented out

of the TCPIP PROFILE file, and the BSDROUTINGPARMS statements

should be used to configure the initial network definitions.

Dynamic Routing Tables

When TCP/IP is configured to use RouteD, there are actually two routing tables.

The first routing table is managed by RouteD, and is updated dynamically based on

the RIP protocol. RouteD will then update the internal routing table of the RouteD

virtual machine. The two routing tables might not be identical for the following

reasons:

v ICMP redirects are received by the TCPIP address space. TCPIP updates its

internal routing table, but these changes are not propagated to RouteD. To

prevent this situation, the parameter IGNOREREDIRECTS, should be coded in

the TCPIP PROFILE file.

v The GATEWAY statements are not commented out in the TCPIP PROFILE file. In

this situation, TCPIP will route packets based on the GATEWAY statements, and

then based on the updates by RouteD. This is similar to a condition in UNIX**

environments known as “kernel” routes.

Customizing both the GATEWAY and BSDROUTINGPARMS statements should only

be attempted by network programmers familiar with IP routing, RIP, and the

ramifications of having distinct routing tables.

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 27

Example of Network Connectivity

 Figure 18 shows a host, VM1, directly connected to networks 193.9.200 and 193.0.2.

Neither network has subnets. VM1 is indirectly connected to network 128.84, which

has subnets using the high-order byte of the host number as the subnet field. The

subnet 128.84.1 is accessible through 193.9.200.2; the subnet 128.84.55 is

accessible through 193.9.200.100; and the other subnets of 128.84 are accessible

through 193.0.2.2. All packets destined for a network that has no entry in the

routing table should be routed to 193.0.2.3. All packets to the host jakespc should

be routed through 193.0.2.2.

Notes:

1. Directly-attached networks must be defined in the GATEWAY table before

default networks (DEFAULTNET) or first-hop networks (FIRSTHOP) are defined.

2. Verification of the TCPIP virtual machine is recommended for connectivity

issues, regardless of whether overt internal or external changes have been

made to the system.

193.0.2193.9.200 To all other
TCP/IP networks

128.84.1
Subnet

128.84.xx
Subnet

Link 1 Link 2

128.84.55
Subnet

Router

Router

193.9.200.100

193.9.200.2

193.0.2.2

Router

Router

193.0.2.3

Host (jakespc)

9.67.43.126

Host (VM1)

Figure 18. Example of Network Connectivity

TCP/IP Structures in VM

28 z/VM: TCP/IP Diagnosis Guide

Chapter 4. Server Initialization

This chapter describes the mechanism used to start each TCP/IP server.

CMS Servers

Servers that run under CMS share a common profile, TCPROFIL EXEC. It is copied

by TCP2PROD to each server’s 191 disk as PROFILE EXEC. You should never

modify this file as it may be replaced by TCP/IP service procedures.

The profile accesses the common disks (198, 591, and 592) and then calls

TCPRUN EXEC. TCPRUN determines what kind of server is running and invokes

the appropriate server function. The kind of server is referred to as the server class.

It is obtained from the userid, nodeid, SYSTEM, or IBM DTCPARMS file.

The DTCPARMS file contains all of the information needed to establish the

necessary runtime environment and to start the server. Exits can be defined to

override any value set by a DTCPARMS file. A complete description of the

DTCPARMS file and the server initialization process can be found in the TCP/IP

Planning and Customization.

Because the various tags in the DTCPARMS file are used to determine what

special environments should be created, as well as the options or parameters that

will be passed to the server, it may become necessary to determine the precise

commands that are issued.

A trace of TCPRUN EXEC can be obtained using one of the following procedures.

Diagnosis Method 1

1. Logon to the server and indicate that you do not want the server to start.

2. Enter the command TCPRUN (DEBUG.

3. Stop the server (#CP EXT or HX)

4. Examine the trace file, TCPRUN DEBUG A.

Diagnosis Method 2

If a problem only occurs when the server is disconnected, an alternate trace

method is provided.

1. Logon to the server and indicate that you do not want the server to start.

2. Enter the command GLOBALV SELECT DTCRUN SETLP DEBUG 1.

3. Logoff.

4. Autolog the server.

5. Logon to the server and stop it (#CP EXT or HX)

6. Examine the trace file, TCPRUN DEBUG A.

7. Enter the command GLOBALV SELECT DTCRUN SETLP DEBUG (set DEBUG to null) to

turn off the trace.

© Copyright IBM Corp. 1987, 2005 29

GCS Servers

Servers that run under the GCS operating system share a common profile,

TCPROFIL GCS. It is copied by TCP2PROD to each server’s 191 disk as PROFILE

GCS. You should never modify this file as it may be replaced by TCP/IP service

procedures.

The profile will then search for and run userid GCS. The DTCPARMS file is not

used by the GCS servers.

Due to the simple nature of the relationship between the common profile and the

server-specific GCS exec, no debug facility is provided.

Server Initialization

30 z/VM: TCP/IP Diagnosis Guide

Chapter 5. TCP/IP Procedures

This chapter describes some of the internal procedures that occur in the TCP/IP

server and the types of input/output (I/O) supported by TCP/IP.

You should collect the messages, console logs, and system and user dumps

pertaining to TCP/IP server protocols and procedures. You should also trace TCP/IP

protocols or procedures to determine TCP/IP suite problems, such as TCP requests

from remote and local clients or servers.

TCP/IP Internals

The following sections describe the internal procedures, queues, and activities for

TCP/IP.

Internal Procedures

Table 5 describes the major internal Pascal procedures. These procedures are

external declarations of processes invoked by the scheduler.

 Table 5. TCP/IP Internal Procedures

Procedure Description

ArpProcess Processes Address Resolution Protocol requests.

CallProcRtn Calls the appropriate processing routine for Activity Control

Blocks (ACBs) with a ProcessName of DEVICEdriverNAME.

ClientTimer Converts an INTERNALclientTIMER ACB to a notification to

the internal client.

ConsistencyChecker Schedules itself at regular intervals to perform various tests

of the TCP/IP machine’s internal consistency. The

ConsistencyChecker maintains various statistics about recent

resource usage. It tries to restart well-known clients that

appear to be inactive and attempts to collect infrequently

used, but active, TCBs.

From1822 Receives incoming datagrams and IMP messages from the

Series/1 on the Defense Data Network (DDN). Processes

incoming IMP messages and passes the incoming

datagrams to IpUp.

IntCliProc Processes notifications for the internal client.

IpDown Processes outgoing IP datagrams received from TcpDown. It

selects the network to use for the first hop, and the address

within that network to employ. It passes datagrams to ToGlue

to send to the Series/1. IpDown also processes table-driven

gateway selections for IpDown’s routings (except for the

internal loopback routes used for debugging, which are hard

coded into DispatchDatagram). All routines are placed in

IpDown and other processes, such as IpUp (for ICMP

redirect messages) and TcpIpInitialize. You can access the

routing information using these routines.

IpUp Processes incoming IP datagrams. If necessary, it

reassembles fragmented datagrams. IpUp sends completed

datagrams to TcpUp, UdpUp, or RawIpUp.

IucvApiGreeter Processes new IUCV paths from clients using IUCV APIs.

© Copyright IBM Corp. 1987, 2005 31

Table 5. TCP/IP Internal Procedures (continued)

Procedure Description

Monitor Maintains internal performance records. It receives status

requests from clients and information on the Series/1 through

StatusIn. The Monitor collects run-time performance statistics

and responds to requests from clients to execute commands

that alter internal routing and addressing information, write

out performance records, control run-time debug tracing, and

indicate the clients that are authorized to make these special

requests. The Monitor also handles some unusual situations,

such as recording errors detected by the interrupt handlers

(which cannot simply write out tracing, because they function

with interrupts disabled) and attempting to autolog

well-known clients.

Notify Sends asynchronous notifications to clients. It processes

ACB, CCB, and TCB bufferpools to manage the notifications

sent to clients through VMCF.

PingProcess Processes PING requests, responses, and time-outs.

RawIpRequest Processes incoming RAWIP requests. It passes outgoing

datagrams to IpDown.

Scheduler The scheduler checks the queues of executable activities,

removes the first item of the highest priority, nonempty

queue, and invokes the indicated process. If all of the

executable job queues are empty, it is inactive until an

interrupt arrives and schedules some activity. If the

consistency checker is not currently scheduled to execute

and there is activity scheduled on the main job queue (the

ToDoQueue), the scheduler establishes a time-out, so that

the consistency checker can be invoked.

ShutDown Shuts down the TCPIP server gracefully. The DoShutDown

parameter returns a true value, and then a return from the

scheduler to main program shutdown is used to call the halt

procedure. You need to return to main to print profile

statistics.

SnmpDpiProcess Processes SNMP DPI requests from an SNMP agent.

SockRequest Processes BSD-style socket requests.

StatusOut Receives requests for information on the status of Glue from

the Monitor, which it passes to ToGlue on the Series/1.

TcpDown Creates outgoing TCP segments based on the client

requests handled by TcpRequest and the remote socket

responses handled by TcpUp. TcpDown packages these

segments into IP datagrams, which it passes to IpDown.

TcpRequest Processes client’s requests for TCP service and for handling

asynchronous notifications. Buffers outgoing client TCP data,

updates the state of TCP connections, and signals TcpDown

to send TCP segments.

TcpUp Processes incoming TCP segments received from IpUp. If

necessary, TcpUp signals Notify to generate asynchronous

notifications about TCP connections. It also processes

window and acknowledgment information from the remote

socket.

TCP/IP Procedures

32 z/VM: TCP/IP Diagnosis Guide

Table 5. TCP/IP Internal Procedures (continued)

Procedure Description

Timer Checks the TimerQueue for any time-outs that may be due

and places them in the ToDoQueue. Then Timer resets the

external timer to awaken it later if future time-outs are

pending.

Timer also encapsulates all operations involving time-outs,

including the Timer process that transforms time-outs into

active signals. The TimerQueue is referenced in the

TCQueue segment.

ToA220 Sends the outgoing datagrams supplied by IpDown to A220.

See “HYPERchannel Driver” on page 38 for more

information.

ToGlue Sends outgoing datagrams supplied by IpDown to the

Series/1.

ToIUCV Sends the outgoing datagrams supplied by IpDown to PVM

IUCV. See “IUCV Links” on page 39 for more information.

ToPCCA3 Sends the outgoing datagrams supplied by IpDown to

PCCA3. PCCA is the name for LAN channel-attached units.

To1822 Sends outgoing datagrams supplied by IpDown to the

Series/1 on DDN.

UdpRequest Processes incoming UDP requests. Gives outgoing

datagrams to IpDown.

1822Status Receives status information from the 1822 interrupt handlers

about the IMP and the Series/1, and passes that information

to the clients.

1822Timer Controls OutHost table cleanup, and brings down and

reinitializes IMP.

Queues

Table 6 describes the queues TCP/IP uses to control events that occur during

run-time.

 Table 6. TCPIP Queues

Queue Description

InDatagram The various device drivers place incoming IP

datagrams in this queue for IpUp to process.

QueueOfCcbsForTcpResources This queue contains a list of ACBs pointing to CCBs

that have tried to perform TcpOpen, but failed because

of a lack of TCBs, data buffers, or SCBs. As resources

become available, they are assigned to the first CCB

on this list. When all resources (a TCB and two data

buffers) are available, a RESOURCESavailable notice

is sent to the client, who reissues the open.

QueueOfCcbsForUdpResources This queue contains a list of ACBs pointing to CCBs

that have tried to perform UdpOpen, but failed

because of a lack of UCBs or SCBs. Processing is

similar to QueueOfCcbsForTcpResources.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 33

Table 6. TCPIP Queues (continued)

Queue Description

QueueOfRcbFrustrated This queue contains raw-IP client-level requests to

send datagrams that cannot be processed, because of

a shortage of buffer space. When buffer space

becomes available internally, the

RAWIPspaceAVAILABLE notice is sent to the

appropriate clients, and the requests are removed from

this queue.

QueueOfTcbFrustrated This queue contains client-level TCP send-requests

that cannot be satisfied, because of a shortage of

internal TCP buffer space. When buffer space

becomes available internally, the

BUFFERspaceAVAILABLE notice is sent to the

appropriate clients, and the requests are removed from

this queue.

QueueOfUcbFrustrated This queue contains UDP client-level requests to send

datagrams that cannot be satisfied, because of a

shortage of buffer space. When buffer space becomes

available internally, the UDPdatagramSPACEavailable

notice is sent to the appropriate clients, and the

requests are removed from this queue.

Segment: EnvelopePointerType IpUp places incoming TCP segments in this queue for

TcpUp to process.

ToDoPullQueue, ToDoPushQueue This is the primary queue for executable activities.

Activities are placed in this queue directly by Signal

and indirectly by SetTimeout. The scheduler removes

these activities from the queue and invokes the

corresponding process.

Internal Activities

Table 7 describes TCP/IP internal activities performed by TCP/IP processes. An

example of called internal activities is shown in Figure 49 on page 74. Activities,

which are found in most TCP/IP internal traces, explain why the process has been

called.

 Table 7. TCP/IP Internal Activities

Activity Description

ACCEPTipREQUEST Sent by the external interrupt handler to the

IPrequestor informing it of an incoming IP-level request

from a local client.

ACCEPTmonitorREQUEST Sent by the external interrupt handler to the Monitor

informing it of an incoming monitor request from a

client.

ACCEPTpingREQUEST Sent by the external interrupt handler to the PING

process informing it of an incoming PING request from

a client.

ACCEPTrawipREQUEST Sent by the external interrupt handler to the

RAWIPrequestor informing it of an incoming

RAWIP-level request.

TCP/IP Procedures

34 z/VM: TCP/IP Diagnosis Guide

Table 7. TCP/IP Internal Activities (continued)

Activity Description

ACCEPTtcpREQUEST Sent by the external interrupt handler to the

TCPrequestor informing it of an incoming TCP-level

request (or a request that belongs to both IP and TCP,

such as Handle) from a local client.

ACCEPTudpREQUEST Sent by the external interrupt handler to the

UDPrequestor to inform it of an incoming UDP-level

request.

ACKtimeoutFAILS Sent by the Timer to TcpDown when an ACK time-out

fails.

ARPtimeoutEXPIRES Sent by the Timer to the ARP process when it is time

to scan the queue for packets that are waiting for an

ARP reply. Outdated packets are discarded.

CCBwantsTCB This is not an activity. ACBs with this activity value

point to CCBs that attempted to perform TcpOpen, but

failed because of a lack of TCBs or data buffers.

These ACBs are located in

QueueOfCcbsForTcpResources.

CCBwantsUCB This is not an activity. ACBs with this activity value

point to CCBs that attempted to perform UpdOpen, but

failed because of a lack of UCBs or data buffers.

These ACBs are located in

QueueOfCcbsForUpdResources.

CHECKconsistency Sent by any process to check the ConsistencyChecker

for the internal data structures.

DELETEtcb Sent by the Timer to the TCPrequestor, signifying that

enough time has elapsed since the connection was

closed to free the TCB without endangering later

sequence numbers or allowing internal dangling

pointers.

DEVICEspecificACTIVITY Sent by a device driver to itself for a driver-specific

purpose.

DISPOSEsockTCB Sent by various processes to SockRequest to delete a

TCB owned by a BSD socket-style client.

EXAMINEincomingDATAGRAM Sent by IP-down or a network driver (such as From-r)

to IpUp when it places an incoming datagram in the

global InDatagram Queue.

EXAMINEincomingSEGMENT Sent by IpUp to TcpUp when an incoming datagram

contains a TCP segment. It places these datagrams in

the global InSegment Queue.

FINISHdatagram Sent by IP-request, TcpDown, and IpUp signifying the

presence of outgoing datagrams in the global

OutDatagram Queue. These datagrams are available

for IpDown, which completes the IP header and sends

it out.

FROMlineSENSE Sent by the 1822 interrupt handler when a unit check

ending status is given by the channel to an I/O

command.

HAVEcompletedIO Sent by the I/O interrupt to a network driver when the

most recent I/O operation has been completed.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 35

Table 7. TCP/IP Internal Activities (continued)

Activity Description

HOSTtimeout Sent by the 1822 initialization routine to the

1822-Timer routine to check the OutHost table for

entries whose idle time limit has been exceeded.

IMPdown Sent by the From-1822 routine to the 1822-Timer

routine when there is an indication that the IMP is

about to go down.

IMPinit Sent by the From-1822 routine to the 1822-Timer

routine when there is an indication from the Series/1

that the IMP is down and needs to be reinitialized.

INFORMmonitor Sent by any internal process informing the Monitor of

some noteworthy situation or event.

INTERNALclientTMOUT Sent to the INTERNALclientTIMERname process,

which converts it to an internal client notification.

INTERNALldsfNOTIFICATION Sent to the internal client, which passes a notification

of an LDSF interrupt.

INTERNALnotification Sent to the internal client, which passes a notification.

IUCVrupt Sent to the ToIUCV process when an IUCV interrupt

occurs.

KILLdetachedTCB Sent by the Timer to TcpRequest indicating that a TCB,

which was detached from a BSD-style socket, has not

disappeared. TcpRequest then deletes it.

LOOKatTIMERqueue Sent by the external interrupt handler to awaken the

Timer process. The Timer process then removes the

appropriate items from the TimerQueue and places

them in the ToDoQueue.

NOactivity Sent when someone does not initialize an ACB.

OPENtimeoutFAILS Sent by the Timer to TcpRequest when an open

time-out fails.

PENDINGpingREQUEST This is not an activity. ACBs with this activity value

contain information on PING requests awaiting a

response or time-out. These ACBs are in a local queue

within TCPING.

PINGtimeoutFAILS Sent by the Timer to the PING process when a Ping

request times out.

PROBEtimeoutFAILS Sent by the Timer to TcpDown when a window probe

should be sent to a given connection.

PROCESSsnmpAGENTrequest Sent by Sock-request to the SNMP DPI process when

a write() is performed on a special SNMPDPI socket.

QUITwaiting Sent by the Timer to TcpRequest when a connection in

a time-wait state should be closed.

READdatagram Sent by the I/O interrupt handler to FromGlue or

StatusIn indicating that a message from the Series/1

should be read.

REASSEMBLYfails Sent by the Timer to IpUp when a datagram

reassembly times out.

REJECTunimplementedREQUEST Sent by the external interrupt handler to Monitor

instructing it to reject an unrecognized request.

TCP/IP Procedures

36 z/VM: TCP/IP Diagnosis Guide

Table 7. TCP/IP Internal Activities (continued)

Activity Description

RESETconnection Sent by TcpRequest to TcpDown in response to a

client’s abort or by TcpUp in response to an

unacceptable segment. It instructs TcpDown to send

an RST to the foreign socket, appearing as though it

came from the local socket with the necessary values

for RCV.NXT and SND.NXT.

RETRANSMITdata Sent by the Timer to TcpDown when TCP data should

be retransmitted.

RETRYread Some drivers set a time-out for this activity if they are

unable to start a read channel program. When the

time-out expires, the drivers try the read again.

RETRYwrite Some drivers set a time-out for this activity if they are

unable to start a write channel program. When the

time-out expires, the drivers try the write again.

SELECTtimeoutFAILS Sent by the Timer to Sock-request indicating that a

select() time-out has expired.

SENDdatagram Sent by IpDown to the network driver of its choice

indicating the availability of one or more datagrams to

send on that network. At present, the supported drivers

are ToGlue, ToPronet, and ToEthernet, and the

supported networks are Telenet, Pronet, and Ethernet,

respectively.

SENDnotice Sent to Notify by any process that has discovered

information that warrants sending an asynchronous

notification to a client.

SendOFFControl Sent by any internal process informing the Series/1

that the host is not ready.

SendONControl Sent by any internal process informing the Series/1

that the host is up and ready.

SENDreadDIAG Sent by any internal process conducting a test of the

Series/1 read channel.

SENDtcpDATA Sent by TcpRequest to TcpDown when data is

available to send to the specified connection.

SENDwriteDIAG Sent by any internal process before it tests the

Series/1 write channel.

SEND1822noops Sent by any internal process before it sends three

1822 NOOP messages to the IMP.

SHUTdownTCPipSERVICE Sent to the shutdown process instructing it to terminate

the TCPIP server gracefully.

STOPlingering Sent by the Timer to TcpRequest indicating that the

lingering time-out for a socket-style connection has

expired. TcpRequest then releases the client.

TERMINATEnotice Sent by the external interrupt handler to Notify when a

final response has been received for an outstanding

VMCF message that Notify has sent.

TOlineSENSE Sent by the 1822 interrupt handler when a unit check

ending status is given by the channel to an I/O

command.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 37

Table 7. TCP/IP Internal Activities (continued)

Activity Description

TRYautologging Sent to the monitor by the timer when an autologged

client has been forced off the network. An attempt is

then made to log on the client.

TRYiucvCONNECT Sent by the IUCV driver to itself (via timeout), so that it

can retry an IUCV connect that has failed.

Input/Output

The following sections describe the types of I/O supported by TCP/IP. These I/O

types include HYPERchannel and IUCV.

HYPERchannel Driver

The HYPERchannel driver was taken from TCTOPC3 PASCAL (Version 1.1) and

modified to support HYPERchannel. There are several major differences between

the IBM 8232 (supported by TCTOPC3) and A22x (370 HYPERchannel adapter).

The IBM 8232 operates like a gateway supporting various LAN attachments, such

as Ethernet, token-ring, and Proteon. TCTOPC3 implements multiple packet

blocking and media interface headers for the IBM 8232. Packets to and from the

IBM 8232 have the IP-packets encapsulated in the media-interface protocol

packets. Multiple packets can also be transferred in an IBM 8232 block transfer. An

IBM 8232 block consists of one or more media-interface encapsulated packets,

prefixed by a halfword index field. The end of the block is indicated by a halfword

index field of zero.

TCTOA22 PASCAL implements the following modifications to TCTOPC3.

v An A220 block starts with the HYPERchannel basic 16-bit message

encapsulation. For more information, see Figure 19 on page 39.

v Media-interface encapsulation is not performed; however, HYPERchannel-block

encapsulation is performed.

v Only a single packet is transferred for each block.

TCTOA22 implements basic message encapsulation with an IP packet starting at

displacement +16 (for example, message header +9 = X'10' and +11 = X'04').

Figure 19 shows the basic 16-bit message encapsulation.

TCP/IP Procedures

38 z/VM: TCP/IP Diagnosis Guide

Two enhancements to the basic 16-bit HYPERchannel encapsulated information are

supported, depending on schedules and assignment of the MESSAGETYPE field.

v Packet-blocking

Assuming that you assigned a unique MESSAGE TYPE field, TCTOA22

conditionally implements packet blocking using the IBM 8232 model (halfword

length fields terminated with a length field of zero). This enhancement requires

your installation to specify block or nonblocking mode.

v SLS/720 Datagram Mode

SLS/720 implements an extended message header for datagram mode that is

not directly interoperable with either the 16-bit or 32-bit mode encapsulation

standard described in RFC1044. It incorporates some aspects of both 16-bit and

32-bit modes, using the first 16 bits to address the SLS/720 in the local domain

and the second 16 bits to address the adapter in the remote domain (with a pair

of SLS/720s connecting the two domains using an RS449/TELCO link).

IUCV Links

At present, IUCV links support two types of IUCV communication: Passthrough

Virtual Machine (PVM) IUCV and System Network Architecture (SNA) IUCV. They

differ only in the connect procedure.

PVM IUCV

There are two types of PVM IUCV connections:

v Remote

v Local.

Trunks to try Message Flags

Protocol server
logical address

Originating
server address

Offset to start of IP
header from byte 12

Offset to start of IP
header from message start

Access Code 0000

(No longer supported)

Physical address of
source adapter

Physical address of
destination adapter

IP type designator
0x34

IP on HYPERchannel
type code 0x05

Padding (variable length including zero bytes)

First (64-offset) bytes of IP datagram

Remainder of IP datagram

No associated data is present if IP
datagram fits in the proper message

Dest
Port #

Source
Port #

To Trunks From Trunks GNA SRCCRC EXC A/D

Associated Data

0

10

20

30

40

50

60

70

Figure 19. The TCP/IP Layered Architecture for VM

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 39

Remote PVM IUCV: The CONNECT request for Remote PVM IUCV contains the

following two fields:

Field Description

VM ID The VM ID of the CONNECT request is the ID of a local virtual machine.

user The user of the CONNECT request is the user of a local virtual machine.

 The format of the user field in the CONNECT request is shown in Figure 20

on page 40.

The time-out is set for one minute, because a response (COMPCONN or SERVER)

should occur within that time. If the time-out expires, the connection is disconnected

and retried later.

If a PENDCONN interrupt is received while waiting for a response to a CONNECT,

a conflict can occur. The conflict is resolved by using the IucvOurPvmNode field. If

the PVM node name is lower in the collating sequence than the remote node, the

CONNECT request is abandoned, and the pending incoming connection request is

served. If the PVM node name is higher in the collating sequence than the remote

node, the pending incoming connection request is abandoned, and the CONNECT

request is served.

Local PVM IUCV: The CONNECT request for Local PVM IUCV contains the

following two fields:

Field Description

VM ID The VM ID of the CONNECT request is the ID of another TCP/IP user.

user The user of the CONNECT request is the user of a local virtual machine.

 The format of the user field in the CONNECT request is shown in Figure 21.

Local IUCV links are considered to be a PVM IUCV link.

SNA IUCV

The CONNECT request for SNA IUCV contains the following two fields:

Field Description

VM ID The VM ID of the CONNECT request is the ID of another TCP/IP user.

Remote PVM node

Remote TCPIP VM ID

1ST Doubleword

2ND Doubleword

81

Figure 20. Format of the User Field for a CONNECT Request

XYZZY

XYZZY

1ST Doubleword

2ND Doubleword

81

Figure 21. Format of the User Field for a Local IUCV CONNECT Request

TCP/IP Procedures

40 z/VM: TCP/IP Diagnosis Guide

user The user of the CONNECT request is the user of a local virtual machine.

 The format of the user field in the CONNECT request is shown in Figure 22.

If the local SNALINK machine is the SNA PLU, there should be a short response

time. If it is the SNA SLU, then the SNALINK machine does not respond until it

receives a BIND from the SNA PLU. Therefore, do not set a time-out while waiting

for a response to your CONNECT, because the SNALINK machine does not initiate

a connect in this case.

When communicating over an established path, blocks up to 32K are sent and

received. The blocks contain packets prefixed by block headers. Each packet is

preceded by a halfword block header that contains the offset within the block of the

next block header. A zero block header indicates the end of the block. Figure 23

shows a block containing a 10-byte packet followed by a 20-byte packet.

The PVM and SNALINK machines do not look at individual packets. They send the

block as a unit to the peer TCP/IP machine using the PVM or SNA network. This

driver only issues one IUCV SEND, and waits for the COMPMSG interrupt before

issuing the next SEND. The PVM or SNALINK machine can have more than one

outstanding SEND through SNALINK.

SNALINK Program Name
(usually SNALINK)

Remote LU Name

1ST Doubleword

2ND Doubleword

81

Figure 22. Format of the User Field for an SNA IUCV CONNECT Request

12 34 0010-byte packet

Offset (dec):

20-byte packet

0 12 14 342

Figure 23. IUCV Block Header

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 41

42 z/VM: TCP/IP Diagnosis Guide

Chapter 6. Diagnosing the Problem

This chapter describes how to diagnose problems associated with TCP/IP and its

interfaces. Different scenarios are used to illustrate a systematic approach to

solving TCP/IP problems, although it is unlikely that they will duplicate exactly the

problems you encounter.

The scenarios presented in this chapter include the inability to connect to a TCP/IP

node, and failure of the HYPERchannel interface and the SNA IUCV connection.

Each scenario describes the problem, explains the symptoms associated with the

problem, outlines the steps necessary to determine the nature of the problem, and

suggests recovery procedures for you to implement.

For each scenario, the following configuration is used:

Nodes and Addresses Configuration Setting

Local node name LOCAL1

Local node IP address 1.2.3.4

Remote node name REMOTE1

Remote node IP address 1.2.4.1

Unable to Connect to TCP/IP Node

This section describes a failure to establish a Telnet connection to a TCP/IP node.

Description of the Problem

You attempt to activate a Telnet connection to a remote node, REMOTE1, but the

system returns an “Invalid or unknown node” message.

Symptom

When you execute the following TELNET command, the system returns the

following message:

TELNET REMOTE1

Host ’REMOTE1’ Unknown.

Problem Determination

The system returns the Host host_name Unknown message, because the node is not

defined in the ETC HOSTS or HOSTS LOCAL file (if ETC HOSTS does not exist) in

VM, the node is not defined in the Domain Name System (DNS), or the host

resides in a domain other than that specified in the TCPIP DATA file.

If you are unsure whether the REMOTE1 host resides in your domain, try specifying

the fully-qualified name, including both the host name and domain name.

If you use Domain Name Server (DNS) at your site, check the DNS database for

REMOTE1 and verify that the IP address is correct.

Another method of narrowing down the possible problem areas is to use the PING

command to see if any communications with the remote system are possible. The

PING command sends a string to the given destination and informs you of the

message’s status. It provides an efficient method for determining whether your

© Copyright IBM Corp. 1987, 2005 43

configuration is correct. The destination may be specified by its name or by its IP

address. The command is issued as follows:

 PING 1.2.4.1

 or

 PING REMOTE1

The possible errors from the PING command invocation and the probable causes of

these errors are:

v HOST UNKNOWN - Name server problem (if host name was used) or problem

with the ETC HOSTS or HOSTS LOCAL file (if ETC HOSTS does not exist).

v DESTINATION UNREACHABLE - This indicates that the name (if specified) was

successfully resolved, but there is no route that will allow access to that host or

network.

Use the NETSTAT GATE command to verify that the 1.2.4 subnet is readable. If

not, check the GATEWAY statements in the PROFILE TCPIP file in VM. The

GATEWAY statement defines how to connect to an external network. In this

scenario, you should find the entry 1.2.4.

If you are using dynamic routing (RouteD), verify that all routing daemons are

operating, and that BSDrouting parms are correct in the PROFILE TCPIP.

v TIMEOUT - Numerous error conditions are possible in this case. It could be that

the remote host is down, network congestion prevented the return of the PING

reply, or the reply came back after the timeout period. Further analysis is

required, focusing on the possible conditions.

PING—Sending an Echo Request to a Foreign Host

The PING command sends an echo request to a foreign host to determine if the

system is accessible. PING uses ICMP as its underlying protocol.

PING Command

The TCP/IP User’s Guide has the complete PING command format.

Resolving the PING Command Problems

The echo request sent by the PING command does not guarantee delivery. More

than one PING command should be sent before you assume that a communication

failure has occurred.

A foreign host can fail to respond even after several PING commands. This can be

caused by one of the following situations:

v The foreign host may not be listening to the network.

v The foreign host may be inoperative, or some network or gateway leading from

the user to the foreign host may be inoperative.

v The foreign host may be slow because of activity.

v The packet may be too large for the foreign host

v The routing table on the local host may not have an entry for the foreign host.

Use additional PING commands to communicate with other foreign hosts in the

network to determine the condition that is causing the communication failure.

However, you need to know the network topology to determine the location of the

failure. Issue the PING commands in the following order, until the failure is located:

1. Send a PING command to your local host.

2. Send a PING command to a host (other than your local host) on your local

network.

Diagnosing the Problem

44 z/VM: TCP/IP Diagnosis Guide

3. Send a PING command to each intermediate node that leads from your local

host to the foreign host, starting with the node closest to your local host.

A successful PING command, sent to a different host on the same network as the

original host, suggests that the original host is down, or that it is not listening to the

network.

If you cannot get echoes from any host on that network, the trouble is usually

somewhere along the path to the foreign hosts. Direct a PING command to the

gateway leading to the network in question. If the PING command fails, continue to

test along the network from the target, until you find the point of the communication

breakdown.

Failure of the HYPERchannel Interface

This scenario describes the failure of a HYPERchannel driver, during which

disruption of the channel interface stops data transmittal between processors.

Description of the Problem

HYPERchannel is a high-speed extension of a channel interface between physically

distinct processors. This interface is similar to Ethernet or token-ring LANs, defined

according to 802 IEEE standards.

A HYPERchannel failure is difficult to diagnose, because it can result from problems

with software or hardware developed by different companies.

Symptom

When a HYPERchannel interface fails, it appears as a channel failure to the host.

To quickly determine if a HYPERchannel interface has failed, use a host-based

channel program, such as NetView® or the Event Reporting Error Program (EREP).

For example, NetView generates a real-time alert if the necessary filters are set.

This alert can automatically trigger a number of actions ranging from displaying a

highlighted message on the NetView screen to taking a series of automated,

corrective steps.

Problem Determination

You should use EREP to analyze a hardware error and determine its source in the

VM environment. Although EREP is limited in diagnosing a HYPERchannel failure, it

can isolate the problem to a HYPERchannel (sub)channel.

If the HYPERchannel has failed, or if a problem is suspected, the primary

diagnostic aid available for use in the VM environment is a TCP/IP level trace.

A MORETRACE HCH can be initiated to trace HYPERchannel activity. The

second-level trace should be used as opposed to just TRACE since the latter traces

only errors, while MORETRACE traces all activity. In analyzing the resultant trace

output, it is helpful to bear in mind that HYPERchannel transmission problems on

the local LAN will normally be reflected via A220 unit check and sense information.

Transmission problems involving remote LANs (via link adapters, 710, 715, 720,

730, etc.) may reflect problems with fault messages, since the A220 part of the

operation may have already completed.

Diagnosing the Problem

Chapter 6. Diagnosing the Problem 45

Since the HYPERchannel hardware is dedicated to the TCPIP virtual machine, the

tracing facilities present in native VM can also be used to aid in problem

determination.

Recovery

If a HYPERchannel hardware problem is evident or suspected by examination of

trace and/or EREP output, then the HYPERchannel driver should be stopped using

the OBEYFILE interface and the device taken off-line. The trace information

(particularly the sense codes) and possibly the EREP data should be made

available to the hardware CE to assist in problem analysis. Once the problem has

been resolved, the NETSTAT CP and OBEYFILE interfaces can be used to

reactivate the HYPERchannel driver.

If the problem cannot be positively identified as hardware-related, stop and restart

the HYPERchannel driver via the OBEYFILE interface, ensuring that “full” tracing is

activated. If the problem does not clear, contact the IBM Support Center. Ensure

that a trace of the HYPERchannel activity is available for submission as supporting

documentation of the problem.

Failure of an SNA IUCV Connection

The SNA IUCV connection communicates with other SNA nodes and is useful for

interfacing with a token-ring or X.25 NPSI configuration.

Description of the Problem

An SNA IUCV connection failure appears as if a device is lost, and the session

between the nodes is disrupted. Use NetView or EREP to identify an SNA IUCV

failure.

Symptom

An SNA IUCV connection failure signals either a hardware failure or a session error,

depending on the status of the connection across the interface. If an active session

is using the connection, the SNA IUCV failure is classified as a session error and a

session-level failure is generated. If a connectionless data transport fails, the SNA

IUCV failure is classified as a hardware failure of the data transport and a link-level

failure is generated by the access method.

When an SNA IUCV connection is disrupted, it is detected by the application that is

sending or receiving data, or by the communication software or hardware. For

example, if you are using UDP or ICMP connectionless data transport, the

datagram detects the failure. If an active session is in progress, an SNA or TCP

connection detects the failure.

Problem Determination

Determining the cause of an SNA IUCV failure depends on whether it is a session

error or hardware failure.

Session Error

Use a logical monitoring system, such as NetView, to determine the cause of a

session error. NetView generates a real-time alert if the necessary filters are set.

This alert notifies the network operator by displaying a highlighted message on the

NetView console. This message lists the session partners, which allows you to

determine where the failure occurred. Using NetView, you can:

v View the network and the specific interface

Diagnosing the Problem

46 z/VM: TCP/IP Diagnosis Guide

v Proceed through several layers of screens to pinpoint the source of the problem

v Test the interface for operability in most cases.

For more information about NetView’s diagnostic capabilities, see NetView at a

Glance.

If you are using an X.25 NPSI configuration, loss of the CTCP in your host can

cause a session error. The default name for the CTCP is TCPIPX25. The CTCP

operates through the X.25 NPSI GATE (Generalized Access to X.25 Transport

Extension) and provides a flexible interface between the host and the simulated LU

in X.25 NPSI.

You can activate an internal trace for TCPIPX25 by putting a TRACE statement in

the X25IPI CONFIG file. Use the DATA option on the TRACE statement and specify

debug flags to view the CTCP internally. At a minimum, specify the following debug

flags:

Flag Description

0 This flag is set to 0.

1 This flag is set to 0.

2 This flag traces the IUCV interface and is set to 1.

3 This flag traces the VTAM® interface and is set to 1.

4 This flag is set to 0.

5 This flag is set to 0.

6 This flag is set to 0.

7 This flag is set to 0.

For more information about the TRACE statement, see the TCP/IP Planning and

Customization.

Hardware Failure

The operating system or access method can detect a hardware failure. When a

hardware failure occurs, the operating system displays a message and writes it to a

system error log, such as EREP. Analyze the error log to determine what hardware

component failed and why.

Recovery

The steps you take to recover the SNA IUCV link depend on your network

configuration and the cause of the failure. Once you have determined the cause,

you can use NetView to recover the SNA IUCV link:

NetView can perform the following enhanced error recovery procedures:

v Highlights the error message on the NetView console so that it does not scroll off

the screen

v Creates automated recovery procedures

v Forwards the alert to the appropriate focal point.

Diagnosing the Problem

Chapter 6. Diagnosing the Problem 47

Diagnosing the Problem

48 z/VM: TCP/IP Diagnosis Guide

Chapter 7. TCP/IP Traces

This chapter describes how to activate traces and direct the output to a file or the

screen. Single and group processes are also described and samples of trace output

are shown.

Debugging in VM

There are no special TCP/IP options or invocation parameters that are specifically

directed toward VM-specific debugging activities. Since all of the servers are

implemented as virtual machines, normal VM debugging tools are available for use

in problem analysis.

Executing Traces

Varying levels of tracing of virtual machine activity are available for use in the VM

environment. This tracing is activated through the use of the CP TRACE command.

Refer to the CP Command Reference publication for more information on the use of

these commands. The scope of the processing that one traces by virtue of these

commands should be selected judiciously. Portions of TCP/IP processing are very

timing-dependent. Excessive tracing can introduce connection failures due to

time-out limits being exceeded.

Activating Traces

There are two levels of detail for run-time traces: first-level and second-level traces.

These levels are also referred to as basic and detailed traces. Second-level traces

provide more detailed information than first-level traces. Each internal TCP/IP

process can be independently selected for first-level tracing or for the additional

level of detail provided by second-level tracing.

Use of the TRACEONLY statement restricts TCP/IP stack tracing to particular users,

devices, or IP addresses.

Activation of tracing can be accomplished by either including a list of processes to

be traced in the TCPIP profile or by using the OBEYFILE command to manipulate

the trace specifications dynamically. A combination of these methods can also be

used to vary the amount of tracing performed as needs dictate. Both levels of

tracing are eligible for manipulation by these means. The default name of the profile

is PROFILE TCPIP. For more information about OBEYFILE, see the TCP/IP

Planning and Customization.

First-Level Trace

To activate and deactivate first-level traces, use the TRACE and NOTRACE

commands, respectively.

The following is the format of the TRACE command:

© Copyright IBM Corp. 1987, 2005 49

��

TRACE

�

 ALL

process_name

��

The parameters of the TRACE command are:

Parameter Description

process_name Is the set of new process names to be activated by TRACE. The

new set replaces any previous set of selected processes.

ALL Is the default value and activates the ALL set of process names.

The following is the format of the NOTRACE command:

The parameters of the NOTRACE command are:

Parameter Description.

process_name Is the set of process names to be deactivated by NOTRACE.

NOTRACE deactivates a set of process names previously started

by a TRACE command.

ALL Is the default value and deactivates the entire trace process,

closing any active trace file.

Second-Level Trace

To activate and deactivate second-level traces, use the MORETRACE and

LESSTRACE commands, respectively.

The following is the format of the MORETRACE command:

The parameters of the MORETRACE command are:

Parameter Description

process_name Is the set of process names to be activated by MORETRACE.

MORETRACE activates second-level traces.

ALL Is the default value and activates the ALL set of process names.

��

NOTRACE

�

 ALL

process_name

��

��

MORETRACE

�

 ALL

process_name

��

TCP/IP Traces

50 z/VM: TCP/IP Diagnosis Guide

The following is the format of the LESSTRACE command:

The parameters of the LESSTRACE command are:

Parameter Description

process_name Is the set of process names to be deactivated by LESSTRACE.

LESSTRACE deactivates a set of process names previously started

by a MORETRACE statement.

ALL Is the default value and deactivates the entire second-level trace

process.

Figure 45 on page 72 shows a sample trace using LESSTRACE.

Directing Output

You can send trace output either to a file or to the screen.

Output Directed to a File

The FILE command creates a file and writes the current trace output to it.

VM FILE Command:

 The parameters of the FILE command are:

Parameter Description

filename The name of the file to which the output is written.

filetype The file type of the file to which the output is written.

filemode The file mode where the file is written.

Output Directed to the Screen

The SCREEN command sends trace output to the TCPIP user console, closing any

active disk trace file.

�� SCREEN ��

The SCREEN command has no parameters.

��

LESSTRACE

�

 ALL

process_name

��

��

FILE

filename

filetype
 A

filemode

��

TCP/IP Traces

Chapter 7. TCP/IP Traces 51

For more information about trace activation and output statements, see the TCP/IP

Planning and Customization .

Process Names

The process names entered in the TRACE, NOTRACE, MORETRACE, and

LESSTRACE commands are used in conjunction with the internal procedures listed

in “Internal Procedures” on page 31. There are single process names and group

process names. A group process combines several single processes into one

process name.

You should be as specific as possible when entering process names, because

some process names yield voluminous output. For example, the output from the

MORETRACE ALL command can be overwhelming. Also, you should not execute

traces unnecessarily, because it can adversely affect system response time.

Note: In the sample traces shown in this chapter, the home addresses could be:

v 9.67.58.233

v 9.67.58.39

v 9.67.58.193

There can be more than one name for a process. The following sections list the

different forms of the process name where appropriate.

Single Process Names

Single process names involve only one event. They are usually not as helpful as

entering a group process name or several single process names, because several

processes can give complementary information, which in some situations, could be

matched with a CCW trace, if required.

ARP

The ARP trace provides information about the ARP process, ARP table contents,

ARP packets, and ARP requests.

Figure 24 shows a sample trace of the ARP process and the ARP table content

using ARP and Parse-Tcp options.

Note: The event Arp adds translation... indicates when ARP translation

information is added to the ARP table. ARPop is the operation field in the ARP

packet. A value of 1 is an ARP request, and a value of 2 is an ARP

response.

TCP/IP Traces

52 z/VM: TCP/IP Diagnosis Guide

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 1

 ArpSenderHardwareAddr: 10005A140138

 ArpSenderInternetAddr: 9.67.58.225

 ArpTargetHardwareAddr: C53400D7C530

 ArpTargetInternetAddr: 9.67.58.234

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 1

 ArpSenderHardwareAddr: 10005A140138

 ArpSenderInternetAddr: 9.67.58.225

 ArpTargetHardwareAddr: C49C00D7C498

 ArpTargetInternetAddr: 9.67.58.234

Figure 24. A Sample of an ARP Trace (Part 1 of 3)

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.234, age 325 seconds

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

ArpReqSent: ArpEnvelopeQueue is now:

 1 packets queued waiting for ARP reply

 First Hop 9.67.58.234, Seconds on queue 0

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 2

 ArpSenderHardwareAddr: 10005A250858

 ArpSenderInternetAddr: 9.67.58.234

 ArpTargetHardwareAddr: 10005A6BB806

 ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.234 = IBMTR: 10005A250858

ArpReplyReceived: ArpEnvelopeQueue is now:

 0 packets queued waiting for ARP reply

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.226, age 310 seconds

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 24. A Sample of an ARP Trace (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 53

Figure 25 shows the MORETRACE command used in conjunction with an ARP

trace.

CCS

Figure 26 shows a sample of a CCS CP System Service trace. This trace indicates

when a remote client has logged on using a TELNET internal client.

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 1

 ArpSenderHardwareAddr: 10005A0019F5

 ArpSenderInternetAddr: 9.67.58.226

 ArpTargetHardwareAddr: F53400D7F530

 ArpTargetInternetAddr: 9.67.58.234

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 1

 ArpSenderHardwareAddr: 10005A0019F5

 ArpSenderInternetAddr: 9.67.58.226

 ArpTargetHardwareAddr: F53400D7F530

 ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.226 = IBMTR: 10005A0019F5

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 24. A Sample of an ARP Trace (Part 3 of 3)

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

ArpReqSent: ArpEnvelopeQueue is now:

 1 packets queued waiting for ARP reply

 First Hop 9.67.58.234, Seconds on queue 0

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 0

 ArpSenderHardwareAddr: 10005A250858

 ArpSenderInternetAddr: 9.67.58.234

 ArpTargetHardwareAddr: 10005A6BB806

 ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.234 = IBMTR: 10005A250858

ArpReplyReceived: ArpEnvelopeQueue is now:

 0 packets queued waiting for ARP reply

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

 .

 .

 .

ScanTranslationTable: Scanning for ARP entries older than 300 seconds

ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39

ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233

ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.234,

ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 25. A Sample of an ARP Trace Using MORETRACE

TCP/IP Traces

54 z/VM: TCP/IP Diagnosis Guide

CLAW Trace Information

The CLAW driver support includes provisions to gather trace information to assist in

problem diagnosis. This tracing is supported by the CLAW process name. Activation

of the CLAW trace process can be accomplished by either including the process

name in the list of processes to be traced in the PROFILE TCPIP file or by using

the OBEYFILE command interface.

Two levels of tracing are supported, TRACE and MORETRACE. Specifying TRACE

CLAW results in the generation of the following output.

v Information about CLAW read and write channel program processing

v Start I/O and write complete notifications

v CSW information on I/O completions

v Data from Sense ID channel command execution

v Statistical information about packets (queue sizes, packet data lengths, and so

forth)

v ACB information.

Figure 27 shows an abridged section of a sample trace of the CLAW process.

Telnet server: Conn 0:Connection opened 09/07/97 at 12:29:14

 Foreign internet address and port:

 net address = 9.67.58.226, port= 1030

 12:30:04 09/07/97 PCCA3 common routine

 KILL TCB #1000 (INTCLIEN)

 Foreign host aborted the connection

 Bytes: 9313 sent, 292 received

 Segs in: 67 OK, 24 pushed

 Max use: 1 in retransmit Q

Figure 26. A Sample of a CCS Trace

 :

ToClaw: Acb Received:

11793672:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A90

 Csw:

 Keys: 00, CcwAddress: 006BABB0

 Unit Status: 0C, Channel Status: 00

 Byte Count: 0

 Device AIXV3:

 Type: CLAW, Status: Sense ID on input

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3:

 Received Sense ID data: FF 30 88 61 00 00 00 on device 0A90

ToClaw: Acb Received:

11793672:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A91

 Csw:

 Keys: 00, CcwAddress: 006BABB0

 Unit Status: 0C, Channel Status: 00

 Byte Count: 0

 Device AIXV3:

 Type: CLAW, Status: Sense ID on output

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

Figure 27. A Sample of a CLAW Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 55

Specifying MORETRACE CLAW results in the generation of the following output:

v All trace information described for TRACE CLAW, above

v Envelope and CLAW control packet information

v IP datagram information

v Read and write channel program information when I/O is started

Figure 28 on page 57 shows an abridged section of a sample trace of the CLAW

process when MORETRACE is specified.

CLAW device AIXV3:

 Received Sense ID data: FF 30 88 61 00 00 00 on device 0A91

CLAW device AIXV3:

 CallSio: Starting I/O on device 0A90. First command 02

ToClaw: Acb Received:

11793984:

 Send datagram -> To-CLAW (from To-CLAW)

 Device AIXV3:

 Type: CLAW, Status: Waiting for start pkt

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 1 0

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32

CLAW device AIXV3:

 CallSio: Starting I/O on device 0A91. First command 01

ToClaw: Acb Received:

11793984:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A91

 Csw:

 Keys: 00, CcwAddress: 00001018

 Unit Status: 0C, Channel Status: 00

 Byte Count: 1

 Device AIXV3:

 Type: CLAW, Status: Waiting for start pkt

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3: ToClaw write complete.

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0

ToClaw: Acb Received:

11793672:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A90

 Csw:

 Keys: 00, CcwAddress: 00002878

 Unit Status: 00, Channel Status: 80

 Byte Count: 8208

 Device AIXV3:

 Type: CLAW, Status: Waiting for start pkt

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

Claw device AIXV3: System validate completed.

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 2 0

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32

CLAW device AIXV3:

 CallSio: Starting I/O on device 0A91. First command 01

 :

Figure 27. A Sample of a CLAW Trace (Part 2 of 2)

TCP/IP Traces

56 z/VM: TCP/IP Diagnosis Guide

:

ToClaw: Acb Received:

11777704:

 Send datagram -> To-CLAW (from To-CLAW)

 Device AIXV3:

 Type: CLAW, Status: Ready

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0

ToClaw: Acb Received:

11777704:

 Have completed I/O -> To-CLAW (from Claw wait scan)

 IoDevice 0000

 Csw:

 Keys: 00, CcwAddress: 00000000

 Unit Status: 00, Channel Status: 00

 Byte Count: 0

 Device AIXV3:

 Type: CLAW, Status: Ready

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3: Received Control Packet:

 Connection Response: Version=2, Link ID=2, Correlator=0,

 Return Code=0, Work station application=TCPIP,

 Host application=TCPIP

CLAW device AIXV3: Received Control Packet:

 Disconnect: Version=2, Link ID=2, Correlator=0,

 Return Code=0, Work station application= ,

 Host application=

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 1 0

CLAW device AIXV3: Sending envelope:

 Disconnect: Version=2, Link ID=2, Correlator=0,

 Return Code=0, Work station application=TCPIP,

 Host application=TCPIP

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32

CLAW device AIXV3: StartClawOutputIo

CCWB at 00692D80, real address=0001FD80, data at 0069B000

OpCode=01 Address=016000 Flags=60 Length=0020

OpCode=22 Address=01FD8F Flags=60 Length=0001

OpCode=08 Address=020008 Flags=00 Length=0000

CLAW device AIXV3:

 CallSio: Starting I/O on device 0A91. First command 01

CLAW device AIXV3: ToClaw: Sio returned 0 on device 0A91

ToClaw: Acb Received:

11777600:

 Send datagram -> To-CLAW (from To-CLAW)

 Device AIXV3:

 Type: CLAW, Status: Ready

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 57

It is not recommended that either level of CLAW tracing be activated as a normal

course of business. These traces have the potential to generate large amounts of

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0

ToClaw: Acb Received:

11777704:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A91

 Csw:

 Keys: 00, CcwAddress: 00020018

 Unit Status: 0C, Channel Status: 00

 Byte Count: 1

 Device AIXV3:

 Type: CLAW, Status: Ready

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3: ToClaw write complete.

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0

ToClaw: Acb Received:

11777704:

 Have completed I/O -> To-CLAW (from Claw interrupt handler)

 IoDevice 0A90

 Csw:

 Keys: 00, CcwAddress: 0001F998

 Unit Status: 00, Channel Status: 80

 Byte Count: 8208

 Device AIXV3:

 Type: CLAW, Status: Ready

 Envelope queue size: 0

 Address: 0A90

 Host name: HOST

 Adapter name: PSCA

 Control task name: NONE

CLAW device AIXV3:

 UnpackReads: NetType 98 AdapterNumber 1 BytesToMove 156

CLAW device AIXV3: Received IP datagram:

 IP Datagram:

 version: 4

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 156 bytes

 Identification: 3590

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 255

 Protocol: ICMP

 Header CheckSum: 42324

 Source Address: 01020301

 Destination Address: 01020302

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 2 of 3)

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 1

CLAW device AIXV3: Sending envelope:

 IP Datagram:

 version: 4

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 156 bytes

 Identification: 3590

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 60

 Protocol: ICMP

 Header CheckSum: 26709

 Source Address: 01020302

 Destination Address: 01020301

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 156

CLAW device AIXV3: StartClawOutputIo

CCWB at 00692D80, real address=0001FD80, data at 0069B000

OpCode=09 Address=016000 Flags=60 Length=009C

OpCode=22 Address=01FD8F Flags=60 Length=0001

OpCode=08 Address=020018 Flags=00 Length=0000

CLAW device AIXV3:

 CallSio: Starting I/O on device 0A91. First command 09

CLAW device AIXV3: ToClaw: Sio returned 0 on device 0A91

 :

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

58 z/VM: TCP/IP Diagnosis Guide

data and there is a fair amount of overhead associated with them. In sample traces

of the same test traffic, MORETRACE CLAW generated more than twice as many

lines of output as TRACE CLAW. Both should be used with discretion, with

exploitation of MORETRACE CLAW reserved for those situations where a

CLAW-related problem is evident and you wish to maximize the collection of

diagnostic data.

Congestion

Figure 29 shows a sample of a TCP Congestion Control trace.

A TCP Congestion Control trace gives information about internal TCPIP congestion.

CONSISTENCYCHECKER or CONSISTENCY_CHECKER

The Consistency Checker or Consistency_Checker trace provides information about

a TCPIP user’s internal consistency, including the number of buffers allocated and

the number of active connections. The Consistency Checker is not enabled unless

the ASSORTEDPARMS configuration statement option CHECKCONSISTENCY has

been specified.

Figure 30 shows a sample of a Consistency Checker trace.

 .

 .

 .

TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 65535. Thr

esh now 1072, was 65535. MSS 536, SndWnd 0

TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 536. Thres

h now 1072, was 1072. MSS 536, SndWnd 0

TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 536. Thres

h now 1072, was 1072. MSS 536, SndWnd 0

TCPUTI015I 11:17:49 05/28/91 TCP-request KILL TCB #1004 (USER11) Foreign h

ost did not respond within OPEN timeout

TCPUTI019I Bytes: 1 sent, 0 acked, 0 received

TCPUTI027I Max use: 1 in retransmit Q

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 65535, Thresh

old 65535, MSS 536, increment 536

TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 65535. Thr

esh now 4096, was 65535. MSS 536, SndWnd 8192

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 536, Threshol

d 4096, MSS 536, increment 536

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 1072, Thresho

ld 4096, MSS 536, increment 536

TCPDOW021I Avoiding small packet. Desired 3, Max seg 536, MaxSndWnd div 2 40

96, HowManyInUse 1

TCPDOW021I Avoiding small packet. Desired 6, Max seg 536, MaxSndWnd div 2 40

96, HowManyInUse 1

TCPDOW021I Avoiding small packet. Desired 9, Max seg 536, MaxSndWnd div 2 40

96, HowManyInUse 1

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 1608, Thresho

ld 4096, MSS 536, increment 536

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 2144, Thresho

ld 4096, MSS 536, increment 536

TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 3216, Thresho

ld 4096, MSS 536, increment 536

TCPUTI015I 11:20:37 05/28/91 TCP-request KILL TCB #1004 (USER11) You abort

ed the connection

TCPUTI019I Bytes: 73 sent, 2293 received

TCPUTI022I Segs in: 19 OK

TCPUTI027I Max use: 1 in retransmit Q

 .

 .

 .

Figure 29. A Sample of a Congestion Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 59

PCCA3 device LCS1: PCCA reports home hardware address 02608C1A73F5 for link ETH1

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2

Maximum recent queues: Timer = 5, ToDo = 4

ToTcpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0

ToCpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0

FromTcpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0

FromCpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0

CheckTree traversing tree IP routing via TreeTraverse

NodeCount 5, tree head says 5

CheckTree traversing tree IP routing via NormalTraverse

NodeCount 5, tree head says 5

Height 4

Free count 295, tree count 5, total 300, expected 300

CheckTree traversing tree TCP connections via TreeTraverse

NodeCount 5, tree head says 5

CheckTree traversing tree TCP connections via NormalTraverse

NodeCount 5, tree head says 5

Height 4

Free count 251, tree count 5, total 256, expected 256

CheckTree traversing tree UDP ports via TreeTraverse

NodeCount 4, tree head says 4

CheckTree traversing tree UDP ports via NormalTraverse

NodeCount 4, tree head says 4

Height 3

Free count 26, tree count 4, total 30, expected 30

CheckTree traversing tree Address translation via TreeTraverse

NodeCount 5, tree head says 5

CheckTree traversing tree Address translation via NormalTraverse

NodeCount 5, tree head says 5

Height 4

Free count 1495, tree count 5, total 1500, expected 1500

Figure 30. A Sample of a CONSISTENCYCHECKER Trace (Part 1 of 2)

TCP/IP Traces

60 z/VM: TCP/IP Diagnosis Guide

DENIALOFSERVICE

The DENIALOFSERVICE trace provides data about the type of Denial-of-Service

attack detected. The DENIALOFSERVICE trace supports two levels of tracing,

TRACE and MORETRACE.

Note: Unlike TRACE DENIALOFSERVICE, which prints only one message for the

first incoming TCP packet per IP address, MORETRACE

DENIALOFSERVICE prints out a message for every packet in the attack. As

attacks come in bulk, this could affect stack performance.

Figure 31 on page 62 shows a sample of a DENIALOFSERVICE trace.

DENIALOFSERVICE was specified in the TRACE statement in the PROFILE TCPIP

file.

17:36:23 10/24/97 PCCA3 common routine KILL TCB #1001 (FTPSERVE) Foreign host ab

orted the connection

 Bytes: 409 sent, 80 received

 Segs in: 18 OK

 Max use: 2 in retransmit Q

Telnet server: Conn 0:Connection opened 10/24/90 at 17:36:35

 Foreign internet address and port: net address = 9.67.58.225, port= 1071

Telnet server: Conn 1:Connection opened 10/24/90 at 17:37:17

 Foreign internet address and port: net address = 9.67.43.126, port= 3213

Maximum recent queues: Timer = 7, ToDo = 3

ToTcpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0

ToCpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0

FromTcpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0

FromCpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0

CheckTree traversing tree IP routing via TreeTraverse

NodeCount 5, tree head says 5

CheckTree traversing tree IP routing via NormalTraverse

NodeCount 5, tree head says 5

Height 4

Free count 295, tree count 5, total 300, expected 300

CheckTree traversing tree TCP connections via TreeTraverse

NodeCount 8, tree head says 8

CheckTree traversing tree TCP connections via NormalTraverse

NodeCount 8, tree head says 8

Height 6

Free count 248, tree count 8, total 256, expected 256

CheckTree traversing tree UDP ports via TreeTraverse

NodeCount 4, tree head says 4

CheckTree traversing tree UDP ports via NormalTraverse

NodeCount 4, tree head says 4

Height 3

Free count 26, tree count 4, total 30, expected 30

CheckTree traversing tree Address translation via TreeTraverse

NodeCount 5, tree head says 5

CheckTree traversing tree Address translation via NormalTraverse

NodeCount 5, tree head says 5

Height 4

Free count 1495, tree count 5, total 1500, expected 1500

CcbGarbageCollect disposing of CCB for client TCPUSR13

17:38:18 10/24/97 TCP-request KILL TCB #1006 (FTPSERVE) OK

 Bytes: 11457 sent, 2 received

 Segs in: 5 OK

 Max use: 3 in retransmit Q

Telnet server: Conn 2:Connection opened 10/24/97 at 17:39:21

 Foreign internet address and port: net address = 9.67.58.225, port= 1072

Telnet server: Conn 3:Connection opened 10/24/97 at 17:41:27

 Foreign internet address and port: net address = 9.67.58.225, port= 1073

Figure 30. A Sample of a CONSISTENCYCHECKER Trace (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 61

Figure 32 shows samples of DENIALOFSERVICE traces using MORETRACE.

DENIALOFSERVICE was specified in the MORETRACE statement in the PROFILE

TCPIP file.

ICMP

The ICMP trace provides information about the ICMP packets sent from the

networks, and gives the IP addresses or names if the names are in the HOST

LOCAL file. Figure 33 shows a sample of an ICMP trace. ICMP was specified in the

TRACE statement in the PROFILE TCPIP file.

08:55:15 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from address 10.130.248.99

09:05:54 DTCIPU087I A POD denial-of-service attack has

 been detected from address 10.130.58.22

10:08:08 DTCIPU087I A Land denial-of-service attack has

 been detected from address 10.130.58.42

11:11:34 DTCIPU087I A Synflood denial-of-service attack has

 been detected from address 10.130.249.43

Figure 31. A Sample of a DENIALOFSERVICE in the TRACE Statement

12:49:55 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:05 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:15 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:25 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:35 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:45 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:50:55 DTCIPU087I A Smurf-OB denial-of-service attack has

 been detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:03 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

12:52:15 DTCIPU087I A Land denial-of-service attack has been

 detected from IP address 10.130.201.99

Figure 32. A Sample of a DENIALOFSERVICE in the MORETRACE Statement

TCP/IP Traces

62 z/VM: TCP/IP Diagnosis Guide

IGMP

The IGMP trace provides information about the Internet Group Management

Protocol (IGMP). This includes information about joining and leaving IGMP multicast

groups. It also displays IGMP query and report messages received and the IGMP

reports sent out. Figure 34 shows a sample of a IGMP trace. IGMP was specified in

the TRACE statement in the PROFILE TCPIP file.

INITIALIZE

The initialization trace provides information about TCPIP initialization. The return

codes for the AUTOLOG and FORCE commands are also provided.

PCCA3 initializing:

 Device LCS1:

 Type: LCS, Status: Not started

 Envelope queue size: 0

 Address: 0560

TCP-IP initialization complete.

PCCA3 device LCS1: Received startup packet

 IP-up sees ICMP datagram, code 3, subcode: 3, source:

 Loopback, dest: Loopback, len: 36

PCCA3 device LCS1: PCCA reports home hardware address 02608C1A73F5 for link ETH1

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2

 IP-up sees ICMP datagram, code 0, subcode: 0, source:

 RALVMM, dest: SA23, len: 256

 IP-up sees ICMP datagram, code 3, subcode: 3, source:

 Loopback, dest: Loopback, len: 36

 IP-up sees ICMP datagram, code 0, subcode: 0, source:

 APOLLO, dest: SA23, len: 256

Figure 33. A Sample of an ICMP Trace

DTCIPU055I IgmpAddGroup: Adding multicast group 224.0.0.9 on link TRING interface 9.130.48.70

DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9

 on link TRING interface 9.130.48.70

DTCIPU080I IGMPaddGroup: IGMP report message pending for group 224.0.0.9

DTCIPU057I IgmpHandle: received IGMP datagram

DTCPRC001I version: 4

DTCPRC002I Internet Header Length: 5 = 20 bytes

DTCPRC009I Type of Service:Precedence = Routine

DTCPRC010I Total Length: 28 bytes

DTCPRC011I Identification: 0

DTCPRC009I Flags: May Fragment, Last Fragment

DTCPRC009I Fragment Offset: 0

DTCPRC019I Time To Live: 1

DTCPRC020I Protocol: IGMP

DTCPRC021I Header CheckSum: 40975

DTCPRC022I Source Address: 09823046

DTCPRC023I Destination Address: E0000009

DTCIPU049I IP-up sees IGMP datagram, code: 18, source: 9.130.48.70,

 dest: 224.0.0.9, group: 224.0.0.9, len: 8

DTCIPU050I IgmpHandle: dropping loopback IGMP datagram

DTCIPU055I IgmpAddGroup: Adding multicast group 224.0.0.9 on link FDNET interface 9.130.248.99

DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link FDNET interface 9.130.248.99

DTCIPU080I IGMPaddGroup: IGMP report message pending for group 224.0.0.9

DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link TRING interface 9.130.48.70

DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link FDNET interface 9.130.248.99

:

DTCIPU057I IgmpHandle: received IGMP datagram

DTCPRC001I version: 4

DTCPRC002I Internet Header Length: 5 = 20 bytes

DTCPRC009I Type of Service:Precedence = Routine

DTCPRC010I Total Length: 28 bytes

DTCPRC011I Identification: 36252

DTCPRC009I Flags: May Fragment, Last Fragment

DTCPRC009I Fragment Offset: 0

DTCPRC019I Time To Live: 1

DTCPRC020I Protocol: IGMP

DTCPRC021I Header CheckSum: 37567

DTCPRC022I Source Address: 0982B001

DTCPRC023I Destination Address: E0000001

DTCIPU049I IP-up sees IGMP datagram, code: 17, source: 9.130.176.1, dest: 224.0.0.1, group: *, len: 8

DTCIPU059I IgmpHandle: processing IGMP query

DTCIPU078I IgmpHandle: IGMP report message pending for group 224.0.0.9

DTCIPU082I IgmpHandle: completed IGMP query processing

Figure 34. A Sample of an IGMP Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 63

Figure 35 shows a sample of an INITIALIZE trace using MORETRACE. The

information provided by MORETRACE includes a list of autologged clients,

authorizations, and reserved ports and a table of local ports.

TCPIP AT GDLVM7 VIA RSCS 09/07/97 11:09:58 EST FRIDAY

VM TCP/IP V2R4

 Initializing...

UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"

COMMAND COMPLETE

LCS devices will use diagnose 98 real channel program support

Trying to open GDLVM7 TCPIP *

Trying to open PROFILE TCPIP *

Using profile file PROFILE TCPIP *

PCCA3 initializing:

 Device LCS1:

 Type: LCS, Status: Not started

 Envelope queue size: 0

 Address: 0560

Telnet server: Using port 23

Telnet server: No inactivity timeout

Telnet server: Every 1800 seconds a timing mark option packet will be sent.

**

Log of IBM TCP/IP Telnet Server Users started on 09/07/97 at 11:10:43

State after initialization:

Client list: Queue size = 19

 13610776:

 PrevCCB: Client list

 NextCCB: 13611528

 Authorization: Monitor, Informed

 No outstanding VMCF messages

 Handled notices: none

 Last touched: 20

 Login name: OPERATOR

 Notice list: empty

 Reserved socket list: empty

 VMCF error count: 0

 13611528:

 PrevCCB: 13610776

 NextCCB: 13612280

 Authorization: Monitor, Informed

 No outstanding VMCF messages

 Handled notices: none

 Last touched: 20

 Login name: TCPMAINT

 Notice list: empty

 Reserved socket list: empty

 VMCF error count: 0

 .

 .

 .

 13600336:

 PrevCCB: 13599584

 NextCCB: Client list

 No outstanding VMCF messages

 Handled notices: Buffer space available, Connection state changed, Data deliv

 ered, User-defined notification, Datagram space available, Urgent pending, UDP d

 ata delivered, UDP datagram space available, Other external interrupt received,

 User delivers line, User wants attention, Timer expired, FSend response, FReceiv

 e error, RawIp packets delivered, RawIp packet space available, IUCV interrupt,

 I/O interrupt, Resources available for TcpOpen, Resources available for UdpOpen,

Figure 35. A Sample of an INITIALIZE Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

64 z/VM: TCP/IP Diagnosis Guide

IPDOWN or IP-DOWN

The IPDOWN or IP-DOWN trace provides information about the IP_DOWN process

and IP packets, including the link name and link type.

Figure 36 shows a sample of an IPDOWN trace.

Connection list: Queue size = 1

 Ping response or timeout, SMSG received

 Last touched: 41

 Login name: INTCLIEN

 Notice list: empty

 Reserved socket list: Queue size = 1

 5104192:

 PrevScb: 13601048

 NextScb: 13601048

 Client: INTCLIEN

 4671640:

 PrevTcb: 5104256

 NextTcb: 5104256

 Backoff count 0

 Client: INTCLIEN

 ClientRcvNxt: 0

 ClientSndNxt: 600188177

 CongestionWindow: 65535, SlowStartThreshold: 65535

 Local connection name: 1000

 Foreign socket: net address = *, port= Unspecified

 Sender frustration level: Contented

 Incoming segment queue: Queue size = 1

 5732096:

 PrevDataBuffer: 4672528

 NextDataBuffer: 4672528

 First Unused Sequence Number: 0

 Offset of last byte delivered: 0

 Offset of last byte received: 0

 Sequence number of first byte: 0

 Incoming window number: 0

 Initial receive sequence number: 0

 Initial send sequence number: 600188176

 Maximum segment size: 536

 Local socket: net address = *, port= TELNET (23)

 Outgoing window number: 0

 Precedence: Routine

 RcvNxt: 0

 Round-trip information:

 Smooth variance: 1.500

 ReplaceSmooth TRUE

 SndNxt: 600188176

 SndUna: 600188176

 SndWl1: 0

 SndWl2: 0

 SndWnd: 0

 MaxSndWnd: 0

 State: Listen

 No pending TCP-receive

Figure 35. A Sample of an INITIALIZE Trace Using MORETRACE (Part 2 of 3)

 Local socket: net address = *, port = TELNET (23) * permanently reserved*

 * autolog client *

 VMCF error count: 0

The local port hash table:

 20 = FTPSERVE has 0 TCBs for socket *.FTP default data (20) *Perm 21 = FTPS

ERVE has 0 TCBs for socket *.FTP control (21) *Perm *Autolog 23 = INTCLIEN has

 1 TCBs for socket *.TELNET (23) *Perm *Autolog 25 = SMTP has 0 TCBs for socke

t *.SMTP (25) *Perm *Autolog 53 = NAMESRV has 0 TCBs for socket *.DNS (53) *Pe

rm *Autolog 53 = NAMESRV has 0 TCBs for socket *.DNS (53) *Perm *Autolog 161

 = SNMP has 0 TCBs for socket *.161 *Perm *Autolog 162 = SNMPQE has 0 TCBs for

 socket *.162 *Perm *Autolog 512 = REXECD has 0 TCBs for socket *.REXEC (512)

*Perm *Autolog 514 = REXECD has 0 TCBs for socket *.RSH (514) *Perm *Autolog

 2049 = VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog

Figure 35. A Sample of an INITIALIZE Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 65

When you use the MORETRACE command, you receive information about the

datagram such as the length, ID, protocol, TTL, addresses, and fragments. A

sample of an IPDOWN trace using MORETRACE is shown in Figure 37.

IPUP or IP-UP

The IPUP or IP-UP trace provides the ID, length, protocol, and source address of

incoming datagrams.

Figure 38 shows a sample of an IPUP trace.

When you use the MORETRACE command, you receive additional information

about the datagram, such as TTLs and fragments. A sample of an IPUP trace using

MORETRACE is shown in Figure 39.

MONITOR

The MONITOR trace provides information about monitor requests, such as netstat,

trace modifications, and drops, from authorized users.

A sample of a MONITOR trace using the MORETRACE command is shown in

Figure 40. To receive more information from the details provided by MORETRACE,

use the MONITORquery function.

Ipdown: Link: Link Name: TR1, Link Type: IBMTR,

 Dev Name: LCS1, Dev Type: LCS, Queuesize: 0

Ipdown: FirstHop 9.67.58.234

Figure 36. A Sample of an IPDOWN Trace

IP-down: ShouldFragment: Datagram: 5046328 Packet size:0

 version: 0

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 77 bytes

 Identification: 43

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 60

 Protocol: UDP

 Header CheckSum: 1443

 Source Address: 09433AE9

 Destination Address: 09432B64

Figure 37. A Sample of an IPDOWN Trace Using MORETRACE

 IP-up: datagram ID 52556, len 124, Protocol UDP from 9.67.43.100

 DispatchDatagram: Dest 9.67.43.126, protocol 1

 dispatch mode 1, PassedRoute T, DontRoute F

Figure 38. A Sample of an IPUP Trace

 IP-up examining:

 version: 0

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 124 bytes

 Identification: 52670

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 28

 Protocol: UDP

 Header CheckSum: 22496

 Source Address: 09432B64

 Destination Address: 09433AE9

Figure 39. A Sample of an IPUP Trace Using MORETRACE

TCP/IP Traces

66 z/VM: TCP/IP Diagnosis Guide

Monitor cmd: UseNewFile returns

 OK

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 12

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 2

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 12

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 14

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 4

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 12

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

Figure 40. A Sample of a MONITOR Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 67

MULTICAST

The MULTICAST trace provides information about the multicast options associated

with sockets. This includes information about setting ttl, loopback, and outgoing

interface. It also includes information about joining and leaving multicast groups.

Figure 41 shows a sample of a MULTICAST trace. MULTICAST was specified in the

TRACE statement in the PROFILE TCPIP file.

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 2

Mon Query: reject/reply ret code is 0

 OK

DoMonitorQuery Ending!

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor query

DoMonitorQuery called.

Mon Query: VMCF receive completed.

Mon Query: QueryRecord.QueryType = 8

10:52:37 09/11/90 Monitor KILL TCB #1010 (INTCLIEN) Connection dropped by operator

 Bytes: 6469 sent, 13213 received

 Segs in: 110 OK, 35 pushed

 Max use: 1 in retransmit Q

Respond to TCPMAINT :

 OK

Monitor: SimpleResponse--SendMessage RetCode is

 OK

Monitor called:

 External interrupt handler->Monitor: Accept monitor request

 from TCPMAINT Monitor command

Monitor cmd: VMCF receive completed.

Figure 40. A Sample of a MONITOR Trace Using MORETRACE (Part 2 of 2)

DTCSOC031I SetSockOptIp : Set IP_MULTICAST_TTL : 1

DTCIPU070I Multicast Socket Options

DTCIPU071I Output Interface address : *

DTCIPU072I Time to live (TTL) : 1

DTCIPU073I Loopback : Enabled

DTCIPU075I Number of Multicast groups : 0

DTCSOC032I SetSockOptIp : Set IP_ADD_MEMBERSHIP; multicast group: 224.0.0.9 interface: 9.130.48.70

DTCIPU076I IpMcastAdd: Adding multicast group 224.0.0.9 on link TRING interface 9.130.48.70

DTCIPU070I Multicast Socket Options

DTCIPU071I Output Interface address : *

DTCIPU072I Time to live (TTL) : 1

DTCIPU073I Loopback : Enabled

DTCIPU075I Number of Multicast groups : 1

DTCIPU063I Multicast Group Information

DTCIPU064I Multicast Group Address : 224.0.0.9

DTCIPU065I Interface Address : 9.130.48.70

DTCIPU084I Link Name : TRING

DTCIPU066I Reference Count : 1

DTCIPU067I Report pending : Yes

DTCIPU069I MAC address : C00000040000

Figure 41. A Sample of a MULTICAST Trace (Part 1 of 2)

TCP/IP Traces

68 z/VM: TCP/IP Diagnosis Guide

NOPROCESS or NO-PROCESS or NONE

NOPROCESS or NO-PROCESS or NONE all suppress tracing. They are similar to

the NOTRACE and LESSTRACE commands.

NOTIFY

NOTIFY traces the NOTIFY VMCF transactions between users and TCPIP. It

provides information about MSGIG, CALLCODEs, ACB numbers, text of notices,

return codes of VMCF transactions, and transaction parameters, such as LENA,

LENB, VADA, and VADB. Figure 42 shows a sample of a NOTIFY trace.

DTCSOC032I SetSockOptIp : Set IP_ADD_MEMBERSHIP; multicast group: 224.0.0.9 interface: 9.130.176.198

DTCIPU076I IpMcastAdd: Adding multicast group 224.0.0.9 on link ETRING interface 9.130.176.198

DTCIPU070I Multicast Socket Options

DTCIPU071I Output Interface address : *

DTCIPU072I Time to live (TTL) : 1

DTCIPU073I Loopback : Enabled

DTCIPU075I Number of Multicast groups : 2

DTCIPU063I Multicast Group Information

DTCIPU064I Multicast Group Address : 224.0.0.9

DTCIPU065I Interface Address : 9.130.48.70

DTCIPU084I Link Name : TRING

DTCIPU066I Reference Count : 1

DTCIPU067I Report pending : Yes

DTCIPU069I MAC address : C00000040000

DTCIPU063I Multicast Group Information

DTCIPU064I Multicast Group Address : 224.0.0.9

DTCIPU065I Interface Address : 9.130.176.198

DTCIPU084I Link Name : ETRING

DTCIPU066I Reference Count : 1

DTCIPU067I Report pending : Yes

DTCIPU069I MAC address : 01005E000009

Figure 41. A Sample of a MULTICAST Trace (Part 2 of 2)

Notify called for ACB 13719104:

 Send notice -> Notify (from UDP-request)

 Last touched: 70090

 Client: TCPMAINT

 Notice: UDP data delivered

 UDP data delivered is NOT valid.

Notify called for ACB 13719104:

 Send notice -> Notify (from IP-up)

 Last touched: 70090

 Client: NAMESRV

 Notice: UDP data delivered

 UDP data delivered is valid.

ProduceMessage: Message id = 111 CallCode = 16 ReturnCode = 0

NOTIFY: UDP INFO

LenA = 49

LenB = 234881024 VadB = 1039

AnInteger = 49

Connection = 4096

Figure 42. A Sample of a NOTIFY Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 69

Figure 43 shows a sample of a NOTIFY trace using the MORETRACE command,

which provides additional information about allocated buffers for users and the

number of notices stacked.

Notify called for ACB 13719104:

 Terminate notice -> Notify (from External interrupt handler)

 Last touched: 70090

 Client name: NAMESRV

 Message identifier:111

Notify called for ACB 13719104:

 Send notice -> Notify (from IP-up)

 Last touched: 70090

 Client: TCPMAINT

 Notice: UDP data delivered

 UDP data delivered is valid.

ProduceMessage: Message id = 113 CallCode = 16 ReturnCode = 0

NOTIFY: UDP INFO

LenA = 65

LenB = 234881024 VadB = 53

AnInteger = 65

Connection = 4096

Notify called for ACB 13719416:

 Send notice -> Notify (from UDP-request)

 Last touched: 70090

 Client: NAMESRV

 Notice: UDP data delivered

 UDP data delivered is NOT valid.

Notify called for ACB 13719416:

 Terminate notice -> Notify (from External interrupt handler)

 Last touched: 70090

 Client name: TCPMAINT

 Message identifier:113

Notify called for ACB 13719416:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70090

 Client: SNMPQE

 Notice: RawIp packets delivered

 RawIp packets delivered is valid.

Notify called for ACB 13718896:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70091

 Timeout: 73504.811 seconds

 Client: TCPMAINT

 Notice: Ping response or timeout

 PingTurnCode: OK

 Elapsed time: 0.109 seconds

 Ping response or timeout is valid.

ProduceMessage: Message id = 115 CallCode = 30 ReturnCode = 0

Figure 42. A Sample of a NOTIFY Trace (Part 2 of 2)

TCP/IP Traces

70 z/VM: TCP/IP Diagnosis Guide

OSD

The OSD trace provides information about control flows between TCP/IP for z/VM

and an OSA Express device. Figure 44 shows a sample of an OSD trace.

PARSE-TCP

The PARSE-TCP trace provides information about the options and statements

parsed during TCPIP initialization or after reading an OBEYFILE containing

information about home links. PARSE-TCP produces the TCP/IP configuration if it is

Notify called for ACB 13720144:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70215

 Timeout: 73349.117 seconds

 Client: SNMPQE

 Notice: RawIp packets delivered

 Notify allocates buffer #0

 FindAndSendNotice(SNMPQE) finds 1 notices queued

 RawIp packets delivered is valid.

 WrapUp(SNMPQE): 13719728:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70215

 Timeout: 73349.117 seconds

 Client: SNMPQE

 Notice: RawIp packets delivered

 WrapUp frees buffer #0

Notify called for ACB 13719520:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70215

 Timeout: 73635.007 seconds

 Client: TCPMAINT

 Notice: Ping response or timeout

 PingTurnCode: OK

 Elapsed time: 0.110 seconds

 Notify allocates buffer #0

 FindAndSendNotice(TCPMAINT) finds 1 notices queued

 Ping response or timeout is valid.

ProduceMessage: Message id = 121 CallCode = 30 ReturnCode = 0

 Send ExternalBuffer 0 to TCPMAINT

Notify called for ACB 13719520:

 Terminate notice -> Notify (from External interrupt handler)

 Last touched: 70215

 Timeout: 73635.007 seconds

 Client name: TCPMAINT

 Message identifier:121

 WrapUp(TCPMAINT): 13720144:

 Send notice -> Notify (from PCCA3 common routine)

 Last touched: 70215

 Timeout: 73635.007 seconds

 Client: TCPMAINT

 Notice: Ping response or timeout

 PingTurnCode: OK

 Elapsed time: 0.110 seconds

 WrapUp frees buffer #0

Figure 43. A Sample of a NOTIFY Trace Using MORETRACE

DTCOSD080T OSD initializing

DTCPRI385I Device DEVOSD1:

DTCPRI386I Type: OSD, Status: Not started

DTCPRI387I Envelope queue size: 0

DTCPRI388I Address: 1110

DTCOSD244I OSD device DEVOSD1: To0sd: ScheduleIO INITIALIZE ACB: 00000000 (nil) Type: Accept IP request

DTCOSD088T ToOsd: Acb Received:

DTCPRI048I 61141712:

DTCPRI058I Have completed I/O -> OSD common routine (from OSD handler)

DTCPRI075I IoDevice 1110

DTCPRI076I Csw:

DTCPRI461I Keys: 00, CcwAddress: 00000000

DTCPRI462I Status bits: 00, SCFA: 1001

DTCPRI463I Unit Status: 00, Channel Status: 00

DTCPRI464I Byte Count: 0

DTCPRI470I Subchannel Logout: 00000000

DTCPRI471I Extended Report Word: 00000000

DTCPRI385I Device DEVOSD1:

DTCPRI386I Type: OSD, Status: CSCH on Read Device

DTCPRI387I Envelope queue size: 0

DTCPRI388I Address: 1110

Figure 44. A Sample of an OSD Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 71

specified in the TRACE statement of the TCPIP PROFILE. This trace is helpful

when running many test cases, because it can suggest the traces that should be

executed.

Figure 45 shows a sample of the console log after executing an OBEYFILE

command. The OBEYFILE contained the following commands:

TRACE parse-tcp

MORETRACE tcp

LESSTRACE tcp-request.

Note: MORETRACE activates TCP traces on both the TRACE and

DETAILEDTRACE statements in Figure 45. For more information on TCP

group processes, see “TCP” on page 106. TCPREQUEST is not listed in the

DETAILEDTRACE statement in Figure 45, because the LESSTRACE

command in the OBEYFILE excludes TCP-request.

PING

The PING trace provides information about outgoing PING requests from home

clients, ICMP datagrams, and associated data. It is helpful to match ICMP datagram

data with CCW traces.

Figure 46 shows a sample of a PING trace.

 All tracing goes to screen

 Trace: TCP congestion control, Notify, Parse-Tcp, Retransmit-datagram,

 Roundtrip, TCP-down, TCP-request, TCP-up

 DetailedTrace: TCP congestion control, Notify, Retransmit-datagram,

 Roundtrip, TCP-down, TCP-up

BSD info for links:

ETH1: BrdAddr 9.67.58.63, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224

TR1: BrdAddr 9.67.58.255, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224

TR2: BrdAddr 9.67.58.223, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224

Figure 45. A Sample of a PARSE-TCP Trace Using MORETRACE and LESSTRACE

Ping called:

13714800:

 Accept ping request -> Ping process (from External interrupt handler)

 Last touched: 23

 Timeout: 203.493 seconds

 Client name: TCPMAINT

 Address: 9.67.43.126

 Length: 256

 Timeout: 10

DoPing sending datagram:

 version: 0

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 276 bytes

 Identification: 1234

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 60

 Protocol: ICMP

 Header CheckSum: 43

 Source Address: 09433AE9

 Destination Address: 09432B7E

Figure 46. A Sample of a PING Trace (Part 1 of 2)

TCP/IP Traces

72 z/VM: TCP/IP Diagnosis Guide

QDIO

The QDIO trace provides information about data flows betweenTCP/IP for z/VM and

an OSA Express device. Figure 47 shows a sample of a QDIO trace.

ROUNDTRIP or ROUND-TRIP

The ROUNDTRIP or ROUND-TRIP trace shows the average round-trip time.

Figure 48 shows a sample of the ROUNDTRIP trace.

 Data:

08 00 23 43 00 D1 46 A8 47 83 D5 AB 53 8D 8B 5B

7F D6 A3 7F 8D 5B 7B ED 22 72 5C 92 64 42 3E 79

18 27 2F ED 6B B9 68 04 B1 04 66 C5 27 80 03 9D

78 BB 4F 97 53 A2 0A 52 39 85 D4 A9 5D 53 DA B8

02 6D 9D 11 28 2B 06 E1 DE 16 C9 5F 2B CC 3A 08

C6 7E 72 00 BB C8 C0 E4 11 E3 C5 A8 76 C2 2A 6D

72 13 47 6F 4D F0 3E C9 34 29 02 F9 4E 5C B8 80

74 F3 01 33 FA 1C 8B CB D9 45 B7 9B D3 9B B3 5A

5D A1 06 68 B3 8F 20 E0 CC 82 50 C8 2B 63 AC BD

0D 21 5A EE 3B DB C9 96 DB 6F B5 7B 91 48 EC 56

39 82 E8 37 FB 0E DF E4 F3 91 D1 AF 3C 13 7D 29

B8 AF 57 73 23 E8 97 B6 4E A2 12 1D 6B 8B 7F A5

CF A9 64 2B C5 62 1D 1D 62 C2 3B 0A B5 E0 35 12

8D C9 E3 0B 09 EB 9E 8E 3C 37 A5 16 07 F0 83 29

B6 BC 09 3A C8 40 E1 A1 84 73 F5 F5 73 86 97 1E

E1 C2 BA 0B 30 05 E2 D9 33 21 36 C5 53 75 19 23

UpToPing processing datagram:

 version: 0

 Internet Header Length: 5 = 20 bytes

 Type of Service:Precedence = Routine

 Total Length: 276 bytes

 Identification: 1234

 Flags: May Fragment, Last Fragment

 Fragment Offset: 0

 Time To Live: 58

 Protocol: ICMP

 Header CheckSum: 555

 Source Address: 09432B7E

 Destination Address: 09433AE9

 Data:

00 00 2B 43 00 D1 46 A8 47 83 D5 AB 53 8D 8B 5B

7F D6 A3 7F 8D 5B 7B ED 22 72 5C 92 64 42 3E 79

18 27 2F ED 6B B9 68 04 B1 04 66 C5 27 80 03 9D

78 BB 4F 97 53 A2 0A 52 39 85 D4 A9 5D 53 DA B8

02 6D 9D 11 28 2B 06 E1 DE 16 C9 5F 2B CC 3A 08

C6 7E 72 00 BB C8 C0 E4 11 E3 C5 A8 76 C2 2A 6D

72 13 47 6F 4D F0 3E C9 34 29 02 F9 4E 5C B8 80

74 F3 01 33 FA 1C 8B CB D9 45 B7 9B D3 9B B3 5A

5D A1 06 68 B3 8F 20 E0 CC 82 50 C8 2B 63 AC BD

0D 21 5A EE 3B DB C9 96 DB 6F B5 7B 91 48 EC 56

39 82 E8 37 FB 0E DF E4 F3 91 D1 AF 3C 13 7D 29

B8 AF 57 73 23 E8 97 B6 4E A2 12 1D 6B 8B 7F A5

CF A9 64 2B C5 62 1D 1D 62 C2 3B 0A B5 E0 35 12

8D C9 E3 0B 09 EB 9E 8E 3C 37 A5 16 07 F0 83 29

B6 BC 09 3A C8 40 E1 A1 84 73 F5 F5 73 86 97 1E

E1 C2 BA 0B 30 05 E2 D9 33 21 36 C5 53 75 19 23

UpToPing: Ping was requested by TCPMAINT

UpToPing: Ping took 0.314 seconds

Figure 46. A Sample of a PING Trace (Part 2 of 2)

DTCQDI002T QDIO add buffer for device 0642 received return code 0

DTCQDI005I QDIO queue: 00B52B28 Buffer number: 0000001C

DTCQDI014I QDIO device 0642 OUTBOUND MULTICAST/BROADCAST data transfer of 0034 bytes

DTCQDI010I QDIO: SIGA issued to device 0642 FC: 0000 Mask1: 40000000 Mask2: 00000000 CC: 00

Figure 47. A Sample of a QDIO Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 73

SCHEDULER

The SCHEDULER trace shows the next main process to be executed. Because

scheduler trace entries contain a time stamp, it is often helpful to include TRACE

SCHEDULER when diagnosing other problems so that events can be placed in

time.

Figure 49 shows a sample of a SCHEDULER trace.

Note: The number in each line of the SCHEDULER trace is a partial time stamp

that shows in relative terms when each event occurred. The values are in

16-microsecond units.

Figure 50 shows a sample of a SCHEDULER trace using the MORETRACE

command, which adds information about the ACB to be processed. This trace

provides information, such as message identifiers, client calls, and details related to

VMCF communication.

RecordSend: Timeout interval is 300 timer units

 Ack #1 took 0.043; # acked: 1, ave RT: 0.043

 Avg time in burst: 0.043, err 0.000 => smooth RT: 0.043, smooth var: 0.022

RecordSend: Timeout interval is 75 timer units

 Ack #4 took 0.075; # acked: 2, ave RT: 0.059

 Avg time in burst: 0.075, err 0.032 => smooth RT: 0.047, smooth var: 0.024

RecordSend: Timeout interval is 75 timer units

 Ack #22 took 0.040; # acked: 3, ave RT: 0.053

 Avg time in burst: 0.040, err 0.007 => smooth RT: 0.046, smooth var: 0.020

RecordSend: Timeout interval is 75 timer units

 Ack #25 took 0.041; # acked: 4, ave RT: 0.050

 Avg time in burst: 0.041, err 0.005 => smooth RT: 0.045, smooth var: 0.016

RecordSend: Timeout interval is 75 timer units

 Ack #31 took 0.058; # acked: 5, ave RT: 0.051

 Avg time in burst: 0.058, err 0.013 => smooth RT: 0.047, smooth var: 0.015

RecordSend: Timeout interval is 75 timer units

 Ack #34 took 0.049; # acked: 6, ave RT: 0.051

 Avg time in burst: 0.049, err 0.002 => smooth RT: 0.047, smooth var: 0.012

Figure 48. A Sample of a ROUNDTRIP Trace

Scheduler: 2312233908 Accept TCP request -> TCP-request

Scheduler: 2312801249 Accept TCP request -> TCP-request

Scheduler: 2312801447 Accept TCP request -> TCP-request

Scheduler: 2312801649 Accept monitor request -> Monitor

Scheduler: 2312801997 Accept ping request -> Ping process

Scheduler: 2312802206 Examine incoming datagram -> IP-up

Scheduler: 2312802343 Examine incoming datagram -> IP-up

Scheduler: 2312802446 Send notice -> Notify

Scheduler: 2312802615 Terminate notice -> Notify

Scheduler: 2312802739 Accept TCP request -> TCP-request

Scheduler: 2313031379 Accept TCP request -> TCP-request

Scheduler: 2313031645 Accept monitor request -> Monitor

Figure 49. A Sample of a SCHEDULER Trace

TCP/IP Traces

74 z/VM: TCP/IP Diagnosis Guide

DASD 03EE LINKED R/O; R/W BY TCPMNTA

DMSACP723I Z (3EE) R/O

DASD 03EE DETACHED

DTCSCH004I Scheduler: 2339349463 Accept TCP request -> TCP-request

DTCPRI048I 32871464:

DTCPRI058I Accept TCP request -> TCP-request (from Extnl interrupt hndlr)

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:10

DTCPRI063I Client call: End TCP/IP service

DTCSCH004I Scheduler: 2339442590 Look at Timer Queue -> Timer

DTCPRI048I 32871464:

DTCPRI058I Look at Timer Queue -> Timer (from External interrupt handler)

DTCSCH004I Scheduler: 2339442967 Check consistency -> Consistency checker

DTCPRI048I 32871944:

DTCPRI058I Check consistency -> Consistency checker (from Timer)

DTCSCH004I Scheduler: 2339443369 Terminate notice -> Notify

DTCPRI048I 32871944:

DTCPRI058I Terminate notice -> Notify (from External interrupt handler)

DTCPRI098I Client name: FTPSRVA

DTCPRI099I Message identifier:-3

DTCPRI100I Return code: Abnormal condition during inter-VM communication (VMCF Rc=0 User=FTPSRVA)

DTCSCH004I Scheduler: 2339449984 Look at Timer Queue -> Timer

DTCPRI048I 32871944:

DTCPRI058I Look at Timer Queue -> Timer (from External interrupt handler)

DTCSCH004I Scheduler: 2339450329 Internal Telnet timeout -> Internal Telnet timeout handler

DTCPRI048I 32871584:

DTCPRI058I Internal Telnet timeout -> Internal Telnet timeout handler (from Timer)

DTCPRI103I Timer Datum: 16777216, Timer Number: 1

DTCSCH004I Scheduler: 2339450814 Internal Telnet notification -> Internal Telnet server

DTCPRI048I 32871944:

DTCPRI058I Internal Telnet notification -> Internal Telnet server (from Internal Telnet timeout hndlr)

DTCPRI005I Notification: Timer expired

DTCPRI015I Datum: 16777216, Associated timer: 1

DTCSCH004I Scheduler: 2339521596 Accept TCP request -> TCP-request

DTCPRI048I 32871944:

DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:6

DTCPRI063I Client call: Begin TCP/IP service

DTCSCH004I Scheduler: 2339522504 Accept TCP request -> TCP-request

DTCPRI048I 32871944:

DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:8

DTCPRI063I Client call: Handle notice

DTCPRC104I Notices: Buffer space available, Connection state changed

Figure 50. A Sample of a SCHEDULER Trace Using MORETRACE (Part 1 of 2)

, Data delivered, User-defined notification, Datagram space available

, Urgent pending, UDP data delivered, UDP datagram space available

, Other external interrupt received, User delivers line

, User wants attention, Timer expired, FSend response, FReceive error

, RawIp packets delivered, RawIp packet space available, IUCV interrupt

, I/O interrupt, Resources available for TcpOpen

, Resources available for UdpOpen, Ping response or timeout, SMSG received

DTCSCH004I Scheduler: 2339523820 Accept monitor request -> Monitor

DTCPRI048I 32871944:

DTCPRI058I Accept monitor request -> Monitor (from External interrupt handler)

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:10

DTCPRI063I Client call: Monitor query

DTCSCH004I Scheduler: 2339524493 Accept ping request -> Ping process

DTCPRI048I 32871944:

DTCPRI058I Accept ping request -> Ping process (from External interrupt handler)

DTCPRI070I Client name: TCPMNTA

DTCPRI071I Address: 9.130.3.2

DTCPRI072I Length: 256

DTCPRI073I Timeout: 10

DTCSCH004I Scheduler: 2339525028 Examine incoming datagram -> IP-up

DTCPRI048I 32871824:

DTCPRI058I Examine incoming datagram -> IP-up (from Ping process)

DTCPRI280I Timeout: 64.829 seconds

DTCSCH004I Scheduler: 2339525285 Examine incoming datagram -> IP-up

DTCPRI048I 32871944:

DTCPRI058I Examine incoming datagram -> IP-up (from IP-up)

DTCSCH004I Scheduler: 2339525450 Send notice -> Notify

DTCPRI048I 32871704:

Figure 50. A Sample of a SCHEDULER Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 75

SHUTDOWN or SHUT-DOWN

The SHUTDOWN or SHUT-DOWN trace provides information about clients and

servers, TCPIP shut down, and the status of pending communication between

clients and TCPIP.

Figure 52 shows a sample of a SHUTDOWN trace.

DTCPRI058I Send notice -> Notify (from IP-up)

DTCPRI280I Timeout: 492.394 seconds

DTCPRI081I Client: TCPMNTA

DTCPRI084I Notice: Ping response or timeout

DTCPRI092I PingTurnCode: OK

DTCPRI093I Elapsed time: 0.004 seconds

DTCSCH004I Scheduler: 2339528415 Terminate notice -> Notify

DTCPRI048I 32871704:

DTCPRI058I Terminate notice -> Notify (from External interrupt handler)

DTCPRI280I Timeout: 492.394 seconds

DTCPRI098I Client name: TCPMNTA

DTCPRI099I Message identifier:5

DTCSCH004I Scheduler: 2339529294 Accept TCP request -> TCP-request

DTCPRI048I 32871824:

DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)

DTCPRI280I Timeout: 64.829 seconds

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:14

DTCPRI063I Client call: End TCP/IP service

DTCSCH004I Scheduler: 2339670616 Accept TCP request -> TCP-request

DTCPRI048I 32871824:

DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)

DTCPRI280I Timeout: 64.829 seconds

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:6

DTCPRI063I Client call: Begin TCP/IP service

DTCSCH004I Scheduler: 2339671667 Accept monitor request -> Monitor

DTCPRI048I 32871824:

DTCPRI058I Accept monitor request -> Monitor (from External interrupt handler)

DTCPRI280I Timeout: 64.829 seconds

DTCPRI061I Client name: TCPMNTA

DTCPRI062I Message identifier:8

DTCPRI063I Client call: Monitor command

DASD 03EE LINKED R/O; R/W BY TCPMNTA

DMSACP723I Z (3EE) R/O

DASD 03EE DETACHED

Figure 51. continuation of the SCHEDULER Trace

11:01:57 09/07/90 Shutdown KILL TCB #1001 (FTPSERVE)

 TCP/IP service is being shut down

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1003 (SMTP)

 TCP/IP service is being shut down

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1007 (NAMESRV)

 TCP/IP service is being shut down

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

Figure 52. A Sample of a SHUTDOWN Trace (Part 1 of 2)

TCP/IP Traces

76 z/VM: TCP/IP Diagnosis Guide

SNMPDPI

The SNMPDPI trace provides SNMP “sub-agent” tracing. It lists the MIB queries by

the SNMP agent.

Figure 53 shows a sample of an SNMPDPI trace.

SOCKET

The SOCKET trace provides information about the requests made through the

IUCV socket interface, as well as most responses.

Figure 54 shows a sample of a SOCKET trace.

11:01:57 09/07/90 Shutdown KILL TCB #1000 (INTCLIEN)

 TCP/IP service is being shut down

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1008 (SNMP)

 You aborted the connection

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1002 (PORTMAP)

 You aborted the connection

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1006 (SNMPQE)

 You aborted the connection

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

7 active clients, with 4 connections in use.

I will delay shutting down for 30 seconds, so that

RSTs and shutdown notifications may be delivered.

If you wish to shutdown immediately, without warning,

type #CP EXT again.

Server Telnet closed down. Bye.

PCCA3 shutting down:

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"

COMMAND COMPLETE

ShutDown at 75442.687 seconds

Figure 52. A Sample of a SHUTDOWN Trace (Part 2 of 2)

SNMP DPI process called for ACB 13657768:

 Process SNMP agent request -> SNMP DPI sub-agent (from Sock-request)

 SnmpAgentCcb SNMPD, SnmpAgentSockNumber 7

ProcessMibRequest: Cmd 2, ObjectId 1.3.6.1.2.1.2.2.1.2.1.,

 GroupId 1.3.6.1.2.1.2.2.1.2..

ProcessMibRequest: Name ifDescr, EffectiveCmd 2,

 EffectiveObjectId 1.3.6.1.2.1.2.2.1.2.1., Instance 1

mkDPIresponse: ret_code 0

object_id 1.3.6.1.2.1.2.2.1.2.2, set_type 2, value_len 13

D80638:49424D20 4E505349 20582E32 35000000

SNMP DPI process called for ACB 13657456:

 Process SNMP agent request -> SNMP DPI sub-agent (from Sock-request)

 Timeout: 209.996 seconds

 SnmpAgentCcb SNMPD, SnmpAgentSockNumber 7

ProcessMibRequest: Cmd 1, ObjectId 1.3.6.1.2.1.2.2.1.2.7.,

 GroupId 1.3.6.1.2.1.2.2.1.2.7.

ProcessMibRequest: Name ifDescr, EffectiveCmd 1,

 EffectiveObjectId 1.3.6.1.2.1.2.2.1.2.7., Instance 7

mkDPIresponse: ret_code 2

Figure 53. A Sample of an SNMPDPI Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 77

SSL

The SSL trace provides information about the SSL server’s socket activities that are

unique to the SSL server and information about secure connections.

Figure 55 shows a sample of an SSL trace.

 .

 .

 .

SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 49

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 666, Length 16, TrgCls: 00190003, Reply len 8, Flags 07

SkSimpleResponse: Client USER8 06319a70, retcode 3 errno 0

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 667, Length 16, TrgCls: 00020003, Reply len 8, Flags 07

SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 668, Length 0, TrgCls: 000D0003, Reply len 8, Flags 87

 PrmMsgHi 0, PrmMsgLo 5

SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 669, Length 16, TrgCls: 00190004, Reply len 8, Flags 07

SkSimpleResponse: Client USER8 06319a70, retcode 4 errno 0

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 670, Length 16, TrgCls: 00020004, Reply len 8, Flags 07

SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0

Sock-request called for ACB TCPPRI048I 106078608:

DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)

DTCPRI038I Interrupt type: Pending message

DTCPRI039I Path id: 3

 MsgId 671, Length 52, TrgCls: 00130008, Reply len 40, Flags 07

SkBlockRequest: Pathid 3, Msgid 671, Retryable F

 .

 .

 .

Figure 54. A Sample of a SOCKET Trace

TCP/IP Traces

78 z/VM: TCP/IP Diagnosis Guide

TCPDOWN or TCP-DOWN

The TCPDOWN or TCP-DOWN trace provides information about the outgoing TCP

datagrams, such as data byte length, source port, destination port, and the

connection to which the call is related. TCPDOWN also provides some information

about the other fields in outgoing datagrams, such as:

v Sequence (seq) number

v Acknowledgment (ack) number

v Segment size.

Figure 56 shows a sample of a TCPDOWN trace in which A or AP control bits are

posted (Ack and PUSH).

When you activate a TCPDOWN trace using the MORETRACE command, the

foreign host IP address is given and the format of the output is easier to read.

18:34:14 DTCSSL007I SkTcpSoc: Socket number 1 assigned by the stack.

18:34:14 DTCSSL009I SetIBMSockOpt: SO_PRIVSOCK issued for socket number 1.

18:34:16 DTCSSL007I SkTcpSoc: Socket number 5 assigned by the stack.

18:34:16 DTCSSL008I SetIBMSockOpt: Socket number 5 is now socket type SO_SSL.

18:34:16 DTCSSL027I Port 1024 being used by the SSL security server.

18:34:16 DTCSSL029I 3 concurrent connections can be handled by the SSL security

server.

18:34:16 DTCSSL024I SkSslAcc: Socket number 6 assigned by the stack for SSL

main accept processing.

18:34:26 DTCSSL025I SkTcpAcc: Socket number 7 assigned by the stack for SSLadmin

accept processing.

18:37:21 DTCSSL001I Connection destined for secure port 423.

18:37:21 DTCSSL003I Certificate label to be used: MEDCERT.

18:37:21 DTCSSL005I TCB 93975872 found for SSL security server.

18:37:21 DTCSSL014I Secure connection opened. Secure connections allowed

decreased to 2.

18:37:21 DTCSSL015I Maximum secure connections not reached. Passive open issued

for SSL security server port 1024.

18:37:21 DTCSSL028I SockAddrSsl: Family: 2,

 From_address: 9.130.58.177, From_port:1167,

To_address: 9.130.249.34, To_port: 423, Labe

l: MEDCERT, Other Tcb: 93975872.

18:37:21 DTCSSL007I SkTcpSoc: Socket number 7 assigned by the stack.

18:37:21 DTCSSL024I SkSslAcc: Socket number 8 assigned by the stack for SSL

main accept processing.

18:37:21 DTCSSL008I SetIBMSockOpt: Socket number 7 is now socket type SO_SSL.

18:37:21 DTCSSL030I SSL security server issues a connect for the real server

at address: 9.130.249.34 port: 423.

18:37:21 DTCSSL032I 5 bytes received by SSLSERV from the secure client.

18:37:21 DTCSSL032I 37 bytes received by SSLSERV from the secure client.

18:37:22 DTCSSL031I 1615 bytes sent by SSLSERV to the secure client.

18:37:22 DTCSSL032I 5 bytes received by SSLSERV from the secure client.

18:37:22 DTCSSL032I 68 bytes received by SSLSERV from the secure client.

Figure 55. A Sample of an SSL Trace

TCP-down called for ACB 13716048:

 ACK timeout fails #1007 -> TCP-down (from Timer)

 Last touched: 2782

 TCP-down constructing datagram with 0 bytes of text

 ConstructGram sending header:

 Port 1037->23: #626673280 Ack=639844686 Wnd=65527

A

TCP-down called for ACB 13715736:

 Send TCP data #1007 -> TCP-down (from TCP-request)

 Last touched: 2783

 Timeout: 2947.615 seconds

TCP-down: desired segment size = 18 -> PUSH

 TCP-down finds ready segment size = 18

 TCP-down constructing datagram with 18 bytes of text

 ConstructGram sending header:

 Port 1037->23:

#626673280 Ack=639844686 Wnd=65527 AP

 TCP-down has sent out 18 bytes data; SegLen 18 ; SndNxt 22, ClientSndNxt = 22

Figure 56. A Sample of a TCPDOWN Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 79

Figure 57 shows a sample of a TCPDOWN trace using the MORETRACE

command.

TCPUP or TCP-UP

The TCPUP or TCP-UP trace provides information about incoming TCP datagrams,

such as the connection number, local destination port, sequence number,

acknowledgment number, and window size.

 MakeHead in TCP-down: SourcePort is 1038

 DestinationPort is TELNET (23)

 ConnectionName is 1007

 TCP-down making header seq #650306676

 TCP-down: window size: 32768

 GuessSegSize(9.67.43.126) => 0.0.0.0 -> 9.67.58.234 Link Name: TR1,

 Link Type: IBMTR, Dev Name: LCS1, Dev Type: LCS, max: 0

 TCP-down sending max seg size = 536

 TCP-down constructing datagram with 0 bytes of text

 ConstructGram sending header:

 Source Port: 1038

 Destination Port: 23

 Sequence Number: 650306676

 Data Offset: 6

 Control Bits: SYN

 Window: 32768

Figure 57. A Sample of a TCPDOWN Trace Using MORETRACE (Part 1 of 2)

 Checksum: 15721

 Options:

 Maximum segment size: 536

 GuessSegSize(9.67.43.126) => 0.0.0.0 -> 9.67.58.234 Link Name: TR1,

 Link Type: IBMTR, Dev Name: LCS1, Dev Type: LCS, max: 0

TCP-down called for ACB 13715632:

 ACK timeout fails #1007 -> TCP-down (from Timer)

 Last touched: 2872

 Timeout: 3015.271 seconds

 MakeHead in TCP-down: SourcePort is 1038

 DestinationPort is TELNET (23)

 ConnectionName is 1007

 TCP-down making header seq #650306677

 TCP-down acking #666910577

 TCP-down: window size: 32768

 TCP-down constructing datagram with 0 bytes of text

 ConstructGram sending header:

 Source Port: 1038

 Destination Port: 23

 Sequence Number: 650306677

 Acknowledgement Number: 666910577

 Data Offset: 5

 Control Bits: ACK

 Window: 32768

 Checksum: 31536

TCP-down called for ACB 13715736:

 Send TCP data #1007 -> TCP-down (from TCP-request)

 Last touched: 2873

 Timeout: 3042.149 seconds

TCP-down: desired segment size = 3 -> PUSH

 TCP-down finds ready segment size = 3

 MakeHead in TCP-down: SourcePort is 1038

 DestinationPort is TELNET (23)

 ConnectionName is 1007

 TCP-down making header seq #650306677

 TCP-down acking #666910577

 TCP-down: window size: 32768

 TCP-down constructing datagram with 3 bytes of text

 TCP-down: CopyAllText takes 3 bytes from a buffer

 ConstructGram sending header:

 Source Port: 1038

 Destination Port: 23

 Sequence Number: 650306677

 Acknowledgement Number: 666910577

 Data Offset: 5

 Control Bits: ACK PSH

 Window: 32768

 Checksum: 57145

 TCP-down has sent out 3 bytes data; SegLen 3 ; SndNxt 4, ClientSndNxt = 4

Figure 57. A Sample of a TCPDOWN Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

80 z/VM: TCP/IP Diagnosis Guide

Figure 58 shows a sample of a TCPUP trace.

Figure 59 shows a sample of a TCPUP trace using the MORETRACE command,

which provides complete information about each incoming TCP datagram, except

the data.

 TCP-up’s next segment: Port 1073->23: #568559375 Ack=500632569 Wnd=15652 A

 Valid TCP checksum

 #1006 Established I=1 O=1H1

W57921 RNxt=275 CliRNxt=275 SNxt=42269 SUna=42025 SWnd=15896 MaxSWnd=16384 CWnd=

33641 Thresh=5912 Con Re Pen2048

 Acceptable segment

 * #1006 Established I=1 RNxt=275 CliRNxt=275 SNxt=42269 SUna=42269 SWnd=15652 M

axSWnd=16384 CWnd=33755 Thresh=5912 Pen2048

 TCP-up’s next segment: Port 1071->23: #495605235 Ack=323725624 Wnd=14676 A

 Valid TCP checksum

 #1000 Established I=1 O=1H1

W114300 RNxt=235 CliRNxt=235 SNxt=99624 SUna=99380 SWnd=14920 MaxSWnd=16384 CWnd

=1960 Thresh=7460 Con Re Pen2048

 Acceptable segment

 * #1000 Established I=1 RNxt=235 CliRNxt=235 SNxt=99624 SUna=99624 SWnd=14676 M

axSWnd=16384 CWnd=1960 Thresh=7460 Pen2048

 TCP-up’s next segment: Port 1072->23: #536754847 Ack=469782320 Wnd=15652 A

 Valid TCP checksum

 #1007 Established I=1 O=1H1

W83772 RNxt=247 CliRNxt=247 SNxt=68120 SUna=67876 SWnd=15896 MaxSWnd=16384 CWnd=

38023 Thresh=7216 Con Re Pen2048

 Acceptable segment

 * #1007 Established I=1 RNxt=247 CliRNxt=247 SNxt=68120 SUna=68120 SWnd=15652 M

axSWnd=16384 CWnd=38124 Thresh=7216 Pen2048

Figure 58. A Sample of a TCPUP Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 81

Next TCP header:

 Source Port:1073

 Destination Port: 23

 Sequence Number: 568559378

 Acknowledgement Number: 500650786

 Data Offset: 5

 Control bits: ACK

 Window: 15284

 Checksum: 2161

 Client text starts at 21

 Valid TCP checksum

5240128:

 PrevTcb: 5241080

 NextTcb: 12153680

 Backoff count 0

 Client: INTCLIEN

 Last state notice: Open

 ClientRcvNxt: 568559378

 ClientSndNxt: 500650786

 CongestionWindow: 23488, SlowStartThreshold: 8070

 Local connection name: 1006

 ConnectionTimeoutTime in 150 seconds

 Foreign socket: net address = 9.67.58.225, port= 1073

 Sender frustration level: Contented

 Incoming segment queue: Queue size = 1

 5940600:

 PrevDataBuffer: 5241032

 NextDataBuffer: 5241032

 First Unused Sequence Number: 568559378

 Offset of last byte delivered: 0

 Offset of last byte received: 0

 Sequence number of first byte: 568559378

 Incoming window number: 568561149

 Initial receive sequence number: 568559100

 Initial send sequence number: 500590300

 Maximum segment size: 1960

 Local socket: net address = 9.67.58.233, port= TELNET (23)

 Outgoing segment queue: Queue size = 1

 5944840:

 PrevDataBuffer: 5241056

 NextDataBuffer: 5241056

 First Unused Sequence Number: 500650786

 Offset of last byte delivered: 0

 Offset of last byte received: 220

 Sequence number of first byte: 500650566

 Outgoing window number: 500666070

 Precedence: Routine

 RcvNxt: 568559378

 Round-trip information:

 How many in use: 1

 First free: 14

 First used: 13

 Max number unacked: 1

 Retransmission timeout: 1181.832 seconds

 Smooth trip time: 0.049

 Smooth variance: 0.032

 Total acked: 252

 Average trip time: 0.185

 Acks not counted in round-trip time: 3

 ReplaceSmooth FALSE

Figure 59. A Sample of a TCPUP Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

82 z/VM: TCP/IP Diagnosis Guide

SndNxt: 500650786

 SndUna: 500650566

 SndWl1: 568559378

 SndWl2: 500650566

 SndWnd: 15504

 MaxSndWnd: 16384

 State: Established

 Pending TCP-receive buffer: 2048

 WorkOn called:

 ClientTextStart = 21

 ForeignAddress = 9.67.58.225

 ForeignPort = 1073

 LocalAddress = 9.67.58.233

 LocalPort = TELNET (23)

 SegPrc = Routine

 SegLen = 0

 TextLength = 0

 TCB = 5240128:

 PrevTcb: 5241080

 NextTcb: 12153680

 Backoff count 0

 Client: INTCLIEN

 Last state notice: Open

 ClientRcvNxt: 568559378

 ClientSndNxt: 500650786

 CongestionWindow: 23488, SlowStartThreshold: 8070

 Local connection name: 1006

 ConnectionTimeoutTime in 145 seconds

 Foreign socket: net address = 9.67.58.225, port= 1073

 Sender frustration level: Contented

 Incoming segment queue: Queue size = 1

 5940600:

 PrevDataBuffer: 5241032

 NextDataBuffer: 5241032

 First Unused Sequence Number: 568559378

 Offset of last byte delivered: 0

 Offset of last byte received: 0

 Sequence number of first byte: 568559378

 Incoming window number: 568561149

 Initial receive sequence number: 568559100

 Initial send sequence number: 500590300

 Maximum segment size: 1960

 Local socket: net address = 9.67.58.233, port= TELNET (23)

 Outgoing segment queue: Queue size = 1

 5944840:

 PrevDataBuffer: 5241056

 NextDataBuffer: 5241056

 First Unused Sequence Number: 500650786

 Offset of last byte delivered: 0

 Offset of last byte received: 220

 Sequence number of first byte: 500650566

Figure 59. A Sample of a TCPUP Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 83

TCPREQUEST or TCP-REQUEST

The TCPREQUEST or TCP-REQUEST trace provides information about all TCP

service requests from local clients and servers. TCP services are requested by the

standard procedure. For more information about the standard request procedure,

see the TCP/IP Programmer’s Reference. TCPREQUEST traces can be matched

with client traces, such as FTP traces.

The information contained in a TCPREQUEST trace includes:

v Client name: User ID of the requester

v Message identifier

v Client call (VMCF function only)

v Connection number

v Length

v Handle notices requests, if applicable.

 Outgoing window number: 500666070

 Precedence: Routine

 RcvNxt: 568559378

 Round-trip information:

 How many in use: 1

 First free: 14

 First used: 13

 Max number unacked: 1

 Retransmission timeout: 1181.832 seconds

 Smooth trip time: 0.049

 Smooth variance: 0.032

 Total acked: 252

 Average trip time: 0.185

 Acks not counted in round-trip time: 3

 ReplaceSmooth FALSE

 SndNxt: 500650786

 SndUna: 500650566

 SndWl1: 568559378

 SndWl2: 500650566

 SndWnd: 15504

 MaxSndWnd: 16384

 State: Established

 Pending TCP-receive buffer: 2048

 Acceptable segment

 SND.UNA = 60486

 Old: SndWnd = 15504, Wl1 = 278, Wl2 = 60266

 New: SndWnd = 15284, Wl1 = 278, Wl2 = 60486

 Finished with DataBuffer ending at 60486

 * #1006 Established I=1 RNxt=278 CliRNxt=278

 SNxt=60486 SUna=60486 SWnd=15284 M

axSWnd=16384 CWnd=23651 Thresh=8070 Pen2048

 Next TCP header:

 Source Port: 1073

 Destination Port: 23

 Sequence Number: 568559378

 Acknowledgement Number: 500651006

 Data Offset: 5

 Control Bits: ACK

 Window: 15064

 Checksum: 2161

 Client text starts at 21

 Valid TCP checksum

Figure 59. A Sample of a TCPUP Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

84 z/VM: TCP/IP Diagnosis Guide

The connection number is the TCP/IP connection number shown by NETSTAT in

client traces. This number is computed to match TCP/IP clients with VMCF

connections.

Figure 60 shows a sample of a TCPREQUEST trace. In this sample trace, the

length equals 65535. A port value of 65535 is an X'FFFF' UNSPECIFIEDport. If a

port is specified on a foreign socket, the UNSPECIFIEDaddress (X'00000000') and

UNSPECIFIEDport means that the client or server is on a passive open port.

However, local ports and addresses are specified.

The TCPREQUEST trace using the MORETRACE command adds the following

information:

v Foreign and local IP addresses on active open ports

v Status of the open client port on passive open ports

v Parameters of established connections.

TCP-request called for ACB 13715112:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1259

 Client name: TCPUSRX

 Message identifier:10

 Client call: End TCP/IP service

TCP-request KILLING CLIENT: TCPUSRX Client has ended TCP/IP service

TCP-request called for ACB 13715112:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1275

 Client name: TCPUSRX

 Message identifier:6

 Client call: Begin TCP/IP service

TCP-request KILLING CLIENT: TCPUSRX Client reinitialized TCP/IP service

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1288

 Client name: TCPUSRX

 Message identifier:12

 Client call: Handle notice

 Notices: Buffer space available, Connection state changed, Data delivered,

 UDP data delivered, Timer expired, FSend response, FReceive error, IUCV interrupt

TCP-request called for ACB 13714800:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1288

 Timeout: 1190.212 seconds

 Client name: TCPUSRX

 Message identifier:24

 Client call: Open TCP

TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1288

 Timeout: 1411.224 seconds

 Client name: TCPUSRX

 Message identifier:26

 Client call: FReceive TCP

 Connection number: 1009

 Length: 65535

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1295

 Timeout: 1411.224 seconds

 Client name: TCPUSRX

 Message identifier:28

 Client call: FSend TCP

 Connection number: 1009

 Length: 14

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1295

 Timeout: 1411.224 seconds

 Client name: TCPUSRX

 Message identifier:30

 Client call: FReceive TCP

 Connection number: 1009

 Length: 65535

Figure 60. A Sample of a TCPREQUEST Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 85

Figure 61 shows a sample of the TCPREQUEST trace using MORETRACE.

TCP-request called for ACB 13715632:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1377

 Timeout: 1347.787 seconds

 Client name: TCPUSRX

 Message identifier:22

 Client call: Handle notice

 Notices: Buffer space available, Connection state changed, Data delivered,

 FSend response, FReceive error, IUCV interrupt

TCP-request called for ACB 13715632:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1377

 Timeout: 1347.787 seconds

 Client name: TCPUSRX

 Message identifier:24

 Client call: Open TCP

Client Open: Ccb found.

Client Open: VMCF receive completed.

Active Open: Foreign Addr: 9.67.43.126

 Local Addr: 9.67.58.233

Client Open: sockets OK.

TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE

Open: Tcb #1004 owned by TCPUSRX found in state Closed

New Open: Incoming buffer OK.

Open timeout set for 1504.859 seconds

New Open: Ready to send SYN.

DoOpen: ready to exit.

Open: Ready to OK open.

Client Open: ready to exit.

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1378

 Timeout: 1504.859 seconds

 Client name: TCPUSRX

 Message identifier:26

 Client call: FReceive TCP

 Connection number: 1004

 Length: 65535

#1004 Established I=1 RNxt=1 CliRNxt=1 SNxt=1 SUna=1

SWnd=8192 MaxSWnd=8192 CWnd=536 Thresh=4096 Pen65535

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1384

 Timeout: 1504.859 seconds

 Client name: TCPUSRX

 Message identifier:28

 Client call: FSend TCP

 Connection number: 1004

 Length: 14

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1384

 Timeout: 1504.859 seconds

 Client name: TCPUSRX

 Message identifier:30

 Client call: FReceive TCP

 Connection number: 1004

 Length: 65535

#1004 Established I=2 O=1H1W8193 RNxt=131 CliRNxt=131 SNxt=15 SUna=1SWn d=8192

MaxSWnd=8192 CWnd=536 Thresh=4096 ConRe Pen65535

 .

 .

 .

Figure 61. A Sample of a TCPREQUEST Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

86 z/VM: TCP/IP Diagnosis Guide

TELNET

Although the TELNET server is different from other protocols, TELNET must be

traced like an internal TCPIP process. The TELNET trace includes events that are

not specifically related to TELNET. It provides information about inbound and

outbound negotiations, negotiated options, and the status of connections.

Table 8 describes the TELNET commands from RFC 854, when the codes and

code sequences are preceded by an IAC. For more information about TELNET

commands, see RFC 854. These commands can be retrieved in TELNET traces for

SendNegotiation events and data. Subnegotiations that are started with an SB

command, code 250 (X'FA') and code 240 (X'F0'), are also provided.

 Table 8. Telnet Commands from RFC 854

Command Code Description

SE 240 End of subnegotiation parameters.

NOP 241 No operation.

Data Mark 242 The data stream portion of a Synch. This should

always be accompanied by a TCP Urgent

notification.

Break 243 NVT character BRK.

Interrupt Process 244 The function IP.

Abort output 245 The function AO.

Are You There 246 The function AYT.

Erase character 247 The function EC.

Erase Line 248 The function EL.

Go ahead 249 The GA signal.

SB 250 Indicates that what follows is subnegotiation of the

indicated option.

WILL (option code) 251 Indicates the desire to begin performing, or

confirmation that you are now performing, the

indicated option.

WON’T (option code) 252 Indicates the refusal to perform, or continue

performing, the indicated option.

TCP-request called for ACB 13715840:

 Accept TCP request -> TCP-request (from External interrupt handler)

 Last touched: 1398

 Client name: TCPUSRX

 Message identifier:36

 Client call: Open TCP

Client Open: Ccb found.

Client Open: VMCF receive completed.

Client Open: sockets OK.

TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE

Open: Tcb #1000 owned by TCPUSRX found in state Closed

New Open: Incoming buffer OK.

Open timeout set for 1526.740 seconds

15:09:38 TCPUSRX Passive open #1000 Local = SA23, port 1036;

 Foreign = RALVMM port Unspecified

TCPUSRX has 3 sockets:

 Perm=F, AutoCli=F, Local=SA23 1033, TCB Q = 1

 1009 Closed, Foreign=RALVMM 21

 Perm=F, AutoCli=F, Local=SA23 1035, TCB Q = 1

 1004 Established, Foreign=RALVMM 21

 Perm=F, AutoCli=F, Local=SA23 1036, TCB Q = 1

 1000 Listen, Foreign=RALVMM 65535

DoOpen: ready to exit.

Open: Ready to OK open.

Client Open: ready to exit.

Figure 61. A Sample of a TCPREQUEST Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 87

Table 8. Telnet Commands from RFC 854 (continued)

Command Code Description

DO (option code) 253 Indicates the request that the other party perform,

or confirmation that you are expecting the other

party to perform, the indicated option.

DON’T (option code) 254 Indicates the demand that the other party stop

performing, or confirmation that you are no longer

expecting the other party to perform, the indicated

option.

IAC 255 Data Byte 255.

Table 9 lists the options available for TELNET commands from RFC1060, and

RFC1647. For more information about TELNET protocols, see RFC’s 1060, 1011

and 1647.

 Table 9. Telnet Command Options from RFC 1060

Option Name

0 Binary Transmission

1 Echo

2 Reconnection

3 Suppress Go Ahead

4 Approx Message Size Negotiation

5 Status

6 Timing Mark

7 Remote Controlled Trans and Echo

8 Output Line Width

9 Output Page Size

10 Output Carriage-Return Disposition

11 Output Horizontal Tab Stops

12 Output Horizontal Tab Disposition

13 Output Formfeed Disposition

14 Output Vertical Tabstops

15 Output Vertical Tab Disposition

16 Output Linefeed Disposition

17 Extended ASCII

18 Logout

19 Byte Macro

20 Data Entry Terminal

21 SUPDUP

22 SUPDUP Output

23 Send Location

24 Terminal Type

25 End of Record

26 TACACS User Identification

27 Output Marking

28 Terminal Location Number

29 Telnet 3270 Regime

30 X.3 PAD

31 Negotiate About Window Size

32 Terminal Speed

33 Remote Flow Control

34 Linemode

35 X Display Location

40 TN3270E

TCP/IP Traces

88 z/VM: TCP/IP Diagnosis Guide

Table 9. Telnet Command Options from RFC 1060 (continued)

Option Name

255 Extended-Options-List

Figure 62 shows a sample of a TELNET trace. A terminal type subnegotiation,

option 24 X'18', is included in this sample. The urgent field in TCP datagrams is

sometimes used for TELNET connections. For more information about the urgent

field, see the DATA MARK command in Table 8 on page 87

Internal client sees Acb:

13715528:

 Internal Telnet notification ->

 Internal Telnet server (from Notify)

 Last touched: 594

 Connection: 1007

 Notification: Connection state changed

 New state: Trying to open

 Reason: OK

TcpNoteGotten: Tag = Connection state changed

; NewState = Trying to open

Internal client sees Acb:

13715528:

 Internal Telnet notification ->

 Internal Telnet server (from Notify)

 Last touched: 594

 Connection: 1007

 Notification: Connection state changed

 New state: Open

 Reason: OK

TcpNoteGotten: Tag = Connection state changed

; NewState = Open

Conn 1: StToCpStateChanged: New state (ord) is 1

Conn 1: StToTcpStateChanged: New state (ord) is 1

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: in SendNegotiation:

 sending claim (ord) 253 for option (ord) 24

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

CONNECTION OPENED 09/26/90 at 13:17:04

STMASTER StateArray index: 1; Tcp Conn#: 1007

Telnet server: Conn 1:Connection opened 09/26/90 at 13:17:04

Conn 1: Foreign internet address and port:

 net address = 9.67.58.226, port= 1059

 Foreign internet address and port: net address = 9.67.58.226, port= 1059

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Internal client sees Acb:

13716568:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 595

 Connection: 1007

 Notification: Data delivered

 Bytes delivered: 3

 Push flag: TRUE

Figure 62. A Sample of a TELNET Trace (Part 1 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 89

TcpNoteGotten: Tag = Data delivered

Conn 1: StToCpStateChanged: New state (ord) is 5

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpTELNETdata.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: Negot. received for TERMINALtype

Conn 1: in SendSEND

Conn 1: LenToSend: 6 ToTcpPos: 6 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 6

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Internal client sees Acb:

13716568:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 595

 Connection: 1007

 Notification: Data delivered

 Bytes delivered: 18

 Push flag: TRUE

 TcpNoteGotten: Tag = Data delivered

Conn 1: StToCpStateChanged: New state (ord) is 5

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpTELNETdata.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: SB received for TERMINALtype

Conn 1: Terminal type is settled; it is: IBM-3278-2-E

Conn 1: TermTypeSubNeg. complete; Result is (ord) 3

Conn 1: in SendNegotiation:

sending claim (ord) 253 for option (ord) 25

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation:

sending claim (ord) 251 for option (ord) 25

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation:

sending claim (ord) 253 for option (ord) 0

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation:

sending claim (ord) 251 for option (ord) 0

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Figure 62. A Sample of a TELNET Trace (Part 2 of 3)

TCP/IP Traces

90 z/VM: TCP/IP Diagnosis Guide

Figure 63 shows a sample of a TELNET trace using the MORETRACE command.

MORETRACE provides all of the data that is sent and received between two hosts

connected by TELNET. The data is displayed in hexadecimal and EBCDIC

characters and, therefore, you can trace the complete negotiations and data

exchanges.

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Internal client sees Acb:

13716360:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 595

 Connection: 1007

 Notification: Data delivered

 Bytes delivered: 3

 Push flag: TRUE

 TcpNoteGotten: Tag = Data delivered

Conn 1: StToCpStateChanged: New state (ord) is 5

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpTELNETdata.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: Negot. received for USEeor

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Figure 62. A Sample of a TELNET Trace (Part 3 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 91

Internal client sees Acb:

13715216:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 831

 Timeout: 778.669 seconds

 Connection: 1007

 Notification: Connection state changed

 New state: Trying to open

 Reason: OK

TcpNoteGotten: Tag = Connection state changed

; NewState = Trying to open

Internal client sees Acb:

13715216:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 832

 Timeout: 778.669 seconds

 Connection: 1007

 Notification: Connection state changed

 New state: Open

 Reason: OK

TcpNoteGotten: Tag = Connection state changed

; NewState = Open

Conn 1: StToCpStateChanged: New state (ord) is 1

Conn 1: StToTcpStateChanged: New state (ord) is 1

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: in SendNegotiation:

sending claim (ord) 253 for option (ord) 24

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

FF FD 18

 }

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

CONNECTION OPENED 09/26/90 at 13:21:12

STMASTER StateArray index: 1; Tcp Conn#: 1007

Telnet server: Conn 1:Connection opened 09/26/90 at 13:21:12

Conn 1: Foreign internet address and port:

 net address = 9.67.58.226, port= 1061

 Foreign internet address and port: net address = 9.67.58.226, port= 1061

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Internal client sees Acb:

13716048:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 832

 Connection: 1007

 Notification: Data delivered

 Bytes delivered: 3

 Push flag: TRUE

TcpNoteGotten: Tag = Data delivered

Conn 1: StToCpStateChanged: New state (ord) is 5

Conn 1: Telnet data received from TCP:

FF

FB

18

 Û

Figure 63. A Sample of a TELNET Trace Using MORETRACE (Part 1 of 4)

TCP/IP Traces

92 z/VM: TCP/IP Diagnosis Guide

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: TnToCp Gobblechar: Found IAC at offset 0, FromTcpPos is 0

Conn 1: In GetIac: FirstChar is FB {

Conn 1: In GetIac: FirstChar is 18

Conn 1: StToCpGo returns TOcpTELNETdata.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: Negot. received for TERMINALtype

Conn 1: in SendSEND

Conn 1: LenToSend: 6 ToTcpPos: 6 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 6

FF FA 18 01 FF F0

 z p

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Internal client sees Acb:

13716464:

 Internal Telnet notification -> Internal Telnet server (from Internal Telnet

timeout handler)

 Last touched: 832

 Notification: Timer expired

 Datum: 2000, Associated timer: 1

TcpNoteGotten: Tag = Timer expired

Entering ScanConnections

Internal client sees Acb:

13716152:

 Internal Telnet notification -> Internal Telnet server (from Notify)

 Last touched: 832

 Connection: 1007

 Notification: Data delivered

 Bytes delivered: 18

 Push flag: TRUE

TcpNoteGotten: Tag = Data delivered

Conn 1: StToCpStateChanged: New state (ord) is 5

Conn 1: Telnet data received from TCP:

FF

FA

18

00

49

42

4D

2D

33

32

37

38

2D

32

2D

45

FF

F0

Figure 63. A Sample of a TELNET Trace Using MORETRACE (Part 2 of 4)

TCP/IP Traces

Chapter 7. TCP/IP Traces 93

TIMER

The TIMER trace shows the processes with time-out marks. Figure 64 shows a

sample of a TIMER trace.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: TnToCp Gobblechar: Found IAC at offset 0, FromTcpPos is 0

Conn 1: In GetIac: FirstChar is FA z

Conn 1: In GetIac: FirstChar is 18

Conn 1: In GetIac: FirstChar is 00

Conn 1: In GetIac: FirstChar is 49 I

Conn 1: In GetIac: FirstChar is 42 B

Conn 1: In GetIac: FirstChar is 4D M

Conn 1: In GetIac: FirstChar is 2D -

Conn 1: In GetIac: FirstChar is 33 3

Conn 1: In GetIac: FirstChar is 32 2

Conn 1: In GetIac: FirstChar is 37 7

Conn 1: In GetIac: FirstChar is 38 8

Conn 1: In GetIac: FirstChar is 2D -

Conn 1: In GetIac: FirstChar is 32 2

Conn 1: In GetIac: FirstChar is 2D -

Conn 1: In GetIac: FirstChar is 45 E

Conn 1: In GetIac: FirstChar is FF

Conn 1: In GetIac: FirstChar is F0 p

Conn 1: StToCpGo returns TOcpTELNETdata.

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1

Conn 1: SB received for TERMINALtype

Conn 1: Terminal type is settled; it is: IBM-3278-2-E

Conn 1: TermTypeSubNeg. complete; Result is (ord) 3

Conn 1: in SendNegotiation:

sending claim (ord) 253 for option (ord) 25

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

FF FD 19

 }

Figure 63. A Sample of a TELNET Trace Using MORETRACE (Part 3 of 4)

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation: sending claim (ord)

 251 for option (ord) 25

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

FF FB 19

 {

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation: sending claim (ord)

 253 for option (ord) 0

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

FF FD 00

 }

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: in SendNegotiation: sending claim (ord)

 251 for option (ord) 0

Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1

Conn 1: TcpSend: TurnCode = OK; LenToSend = 3

FF FB 00

 {

Conn 1: TcpSend successful --

 ToTcpPos: 0 UrgentHighWaterMark: -1

Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1

Conn 1: CallToCp Which Conn = 1

Conn 1: Urginfo: Mode is ; Number bytes is 0

Conn 1: StToCpGo returns TOcpDONE.

Figure 63. A Sample of a TELNET Trace Using MORETRACE (Part 4 of 4)

TCP/IP Traces

94 z/VM: TCP/IP Diagnosis Guide

When you execute a TIMER trace with the MORETRACE command, it provides

details about each timer event and request from a process. Figure 65 shows a

sample of a TIMER trace using MORETRACE.

In SetTheComparator, time is: 1809.320 seconds

Setting clock comparator to 1819.320 seconds

In SetTheComparator, time is: 1809.464 seconds

Setting clock comparator to 1821.709 seconds

Timer called at 1821.711 seconds

Timeout due: Internal Telnet timeout handler = Internal Telnet timeout

 -> 2 pending timeouts left; 1 active signals

In SetTheComparator, time is: 1821.724 seconds

Setting clock comparator to 1831.011 seconds

Timer called at 1831.014 seconds

Timeout due: Consistency checker = Check consistency

 -> 2 pending timeouts left; 1 active signals

In SetTheComparator, time is: 1831.026 seconds

Setting clock comparator to 1941.737 seconds

In SetTheComparator, time is: 1831.066 seconds

Setting clock comparator to 1891.066 seconds

In SetTheComparator, time is: 1845.219 seconds

Setting clock comparator to 1855.219 seconds

In SetTheComparator, time is: 1845.295 seconds

Setting clock comparator to 1891.066 seconds

In SetTheComparator, time is: 1854.782 seconds

Setting clock comparator to 1864.781 seconds

Timer called at 1864.784 seconds

Timeout due: Ping process = Ping timeout fails

 -> 4 pending timeouts left; 1 active signals

In SetTheComparator, time is: 1864.797 seconds

Setting clock comparator to 1891.066 seconds

Figure 64. A Sample of a TIMER Trace

PutAcbInOrder adding Acb:

13715216:

 Ping timeout fails -> No process! (from Timer)

 Last touched: 1812

 Timeout: 1910.945 seconds

In PutAcbInOrder, timer queue is

The time is 1900.966 seconds

Timer Queue:Queue size = 5

 13715216:

 PrevACB: Timer queue

 NextACB: 13714904

 QueueHead:Timer queue

 Ping timeout fails -> No process! (from Timer)

 Last touched: 1812

 Timeout: 1910.945 seconds

Figure 65. A Sample of a TIMER Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 95

UDPREQUEST

The UDPREQUEST trace provides information about all UDP service requests from

local clients and servers. Figure 66 shows a sample of a UDPREQUEST trace.

 13714904:

 PrevACB: 13715216

 NextACB: 13715632

 QueueHead:Timer queue

 Internal Telnet timeout -> Internal Telnet timeout handler (from Timer)

 Last touched: 1737

 Timeout: 1941.737 seconds

 Timer Datum: 2000, Timer Number: 1

 13715632:

 PrevACB: 13714904

 NextACB: 13716048

 QueueHead:Timer queue

 Check consistency -> Consistency checker (from Timer)

 Last touched: 1803

 Timeout: 1951.205 seconds

 13716048:

 PrevACB: 13715632

 NextACB: 13715320

 QueueHead:Timer queue

 ARP timeout expires -> ARP (from Timer)

 Last touched: 1769

 Timeout: 2034.862 seconds

 13715320:

 PrevACB: 13716048

 NextACB: Timer queue

 QueueHead:Timer queue

 Open timeout fails #1006 -> TCP-request (from Timer)

 Last touched: 71

 Timeout: 604874.674 seconds

In SetTheComparator, time is: 1901.123 seconds

Setting clock comparator to 1910.945 seconds

CancelTimeout removing ACB:

13715216:

 PrevACB: Timer queue

 NextACB: 13714904

 QueueHead:Timer queue

 Ping timeout fails -> Ping process (from Timer)

 Last touched: 1812

 Timeout: 1910.945 seconds

In SetTheComparator, time is: 1901.251 seconds

Setting clock comparator to 1941.737 seconds

PutAcbInOrder adding Acb:

13715736:

 Ping timeout fails -> No process! (from Timer)

 Last touched: 1827

 Timeout: 1926.436 seconds

In PutAcbInOrder, timer queue is

The time is 1916.457 seconds

Figure 65. A Sample of a TIMER Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

96 z/VM: TCP/IP Diagnosis Guide

When you execute a UDPREQUEST trace using the MORETRACE command, it

adds information about datagram checksums and UCBs. Figure 67 shows a sample

of the UDPREQUEST trace using MORETRACE.

UDP-request called for ACB 13706816:

 Accept UDP request -> UDP-request (from External interrupt handler)

 Client name: VMNFS

 Message identifier:10

 Client call: Open UDP

 Connection number: 0

UDP-request called for ACB 13706816:

 Accept UDP request -> UDP-request (from External interrupt handler)

 Client name: VMNFS

 Message identifier:14

 Client call: Send UDP

 Connection number: 0

 VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Local Socket:

 net address = *, port= 2049

UDP-request: Foreign Socket:

 net address = 14.0.0.0, port= PORTMAP (111)

UDP-request called for ACB 13706608:

 Accept UDP request -> UDP-request (from External interrupt handler)

 Client name: VMNFS

 Message identifier:16

 Client call: Receive UDP

 Connection number: 0

UDP-request called for ACB 13707128:

 Accept UDP request -> UDP-request (from External interrupt handler)

 Client name: VMNFS

 Message identifier:18

 Client call: Send UDP

 Connection number: 0

 VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Local Socket:

 net address = *, port= 2049

UDP-request: Foreign Socket:

 net address = 14.0.0.0, port= PORTMAP (111)

Figure 66. A Sample of a UDPREQUEST Trace

UDP-checksum: datagram = 8DD1 pseudo-header = 88AE final = E97F

UDP-checksum: datagram = C48C pseudo-header = 88C8 final = B2AA

UDP-checksum: datagram = 8DD1 pseudo-header = 88AD final = E980

UDP-request called for ACB 13706504:

Figure 67. A Sample of a UDPREQUEST Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 97

UDPUP

The UDPUP trace provides information about incoming UDP datagrams. Figure 68

shows a sample of a UDPUP trace using the MORETRACE command with a

remote VM/NFS server and a local Portmapper client. Note that the control blocks

for UDP connections are UCBs and not TCBs.

 Accept UDP request -> UDP-request (from External interrupt handler)

 Timeout: 1190.772 seconds

 Client name: VMNFS

 Message identifier:10

 Client call: Open UDP

 Connection number: 0

UDP-request: Ccb found.

UDP-request: Client UdpOpen called.

ClientUDPOpen: Response.Connection = 34817

UDP-request called for ACB 13706504:

 Accept UDP request -> UDP-request (from External interrupt handler)

 Timeout: 1190.772 seconds

 Client name: VMNFS

 Message identifier:14

 Client call: Send UDP

 Connection number: 0

 VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Ccb found.

UDP-request: Client UdpSend called.

CheckClient: Ucb found

5028920:

 PrevUcb: 12952304

 NextUcb: 12952304

 BytesIn: 0, BytesOut: 0

 Socket:

VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog

 ConnIndex: 0, Frustration: Contented

 IncomingDatagram queue size: 0

 ShouldChecksum: TRUE, UdpReceivePending:

 FALSE,WhetherDatagramDelivered: FALSE

UDP-request: Local Socket:

 net address = *, port= 2049

UDP-request: Foreign Socket:

 net address = 14.0.0.0, port= PORTMAP (111)

UDP-request: Udp-Send: sending 64 byte UDP datagram.

UDP-checksum: datagram = 15FF pseudo-header = 1C51 final = CDAF

UDP-checksum: datagram = 15FF pseudo-header = 1C51 final = CDAF

UDP-checksum: datagram = 0896 pseudo-header = 1C35 final = DB34

UDP-checksum: datagram = 0896 pseudo-header = 1C35 final = DB34

Figure 67. A Sample of a UDPREQUEST Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

98 z/VM: TCP/IP Diagnosis Guide

Group Process Names

Group process names combine more than one single process into the same

process name. In all trace commands, TRACE, NOTRACE, MORETRACE, and

LESSTRACE, you can enter more than one group process name.

ALL

The ALL trace provides information about all available events. You must be very

careful when using the ALL trace, because it can overwhelm the console and

adversely affect system response time.

HANDLERS

The HANDLERS group process combines A220 handler, external interrupt handler,

I/O interrupt handler, DDN1822 I/O interrupt handler, IUCV handler, and PCCA

handler traces.

HCH

The HCH group process combines A220 handler and A220 common routine traces.

DASD 3EE DETACHED

UptoUDP called:

UptoUDP: Destination port # 34078936

UptoUDP: Ucb not found - dropping datagram

UptoUDP called:

UptoUDP: Destination port # 34078936

UptoUDP: Ucb not found - dropping datagram

UptoUDP called:

UptoUDP: Destination port # 34078929

UptoUDP: Ucb not found - dropping datagram

UptoUDP called:

UptoUDP: Destination port # 7274560

UptoUDP: Ucb found:

5028816:

 PrevUcb: 12686112

 NextUcb: 12686112

 BytesIn: 0, BytesOut: 0

 Socket:

PORTMAP has 0 TCBs for socket *.PORTMAP (111)

 ConnIndex: -23, Frustration: Contented

 IncomingDatagram queue size: 0

 ShouldChecksum: TRUE, UdpReceivePending:

 FALSE,WhetherDatagramDelivered: FALSE

UptoUDP called:

UptoUDP: Destination port # 134283479

UptoUDP: Ucb found:

5028920:

 PrevUcb: 12952304

 NextUcb: 12952304

 BytesIn: 0, BytesOut: 64

 Socket:

VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog

 ConnIndex: 0, Frustration: Contented

 IncomingDatagram queue size: 0

 ShouldChecksum: TRUE, UdpReceivePending:

 FALSE,WhetherDatagramDelivered: FALSE

UptoUDP called:

UptoUDP: Destination port # 7274560

UptoUDP: Ucb found:

5028816:

 PrevUcb: 12686112

 NextUcb: 12686112

 BytesIn: 56, BytesOut: 36

 Socket:

PORTMAP has 0 TCBs for socket *.PORTMAP (111)

 ConnIndex: -23, Frustration: Contented

 IncomingDatagram queue size: 0

 ShouldChecksum: TRUE, UdpReceivePending:

 FALSE,WhetherDatagramDelivered: FALSE

Figure 68. A Sample of a UDPUP Trace Using MORETRACE

TCP/IP Traces

Chapter 7. TCP/IP Traces 99

IUCV

The IUCV group process combines IUCV handler and TOIUCV traces. It provides

information about IUCV activities. Figure 69 shows a sample of an IUCV trace in

which the local TCPIP client is TCPIP1, the other local TCPIP server is user

TCPIP2, and the device name is LOCIUVC.

Figure 69 also shows an ICMP trace. An ICMP datagram with an ICMP request

code of 8 and a PING trace executed from TCPIP2 is also shown.

TCPIP1 AT VMHOST01 VIA RSCS

 09/26/97 14:34:12 EST WEDNESDAY VM TCP/IP V2R4

 Initializing...

UnlockAll issuing "CP UNLOCK TCPIP1 0 DFF"

COMMAND COMPLETE

LCS devices will use diagnose 98 real channel program support

Trying to open VMHOST01 TCPIP *

Using profile file VMHOST01 TCPIP *

IUCV initializing:

 Device LOCIUCV:

 Type: PVM IUCV, Status: Not started

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

PVM IUCV LOCIUCV : ToIucv IssueConnect: Vm Id:

TCPIP2, DWord1: XYZZY, DWord2: XYZZY

PVM IUCV LOCIUCV : ToIucv: Connect returns pathid 1

Telnet server: Using port 23

Telnet server: No inactivity timeout

Telnet server: Every 1800 seconds a timing mark option packet will be sent.

**

Log of IBM TCP/IP Telnet Server Users started on 09/26/90 at 14:35:04

TCP-IP initialization complete.

ToIucv: Acb Received:

13592024:

 IUCV interrupt -> To-IUCV (from External interrupt handler)

 Last touched: 48

 Interrupt type: Pending connection

 Path id: 0

 VMid: TCPIP2, User1: XYZZY, User2: XYZZY

ToIucv: Received PENDCONN. pendcuser1: XYZZY,

 pendcuser2: XYZZY, pendcvmid: TCPIP2, IucvPathid: 0

 Device LOCIUCV:

 Type: PVM IUCV, Status: Issued connect

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

ToIucv: Severing path 1

PVM IUCV LOCIUCV : ToIucv: Accepting path 0

PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 0 0

Telnet server: Global connection to *CCS CP System Service established

Telnet server: First line of *CCS logo is: VIRTUAL MACHINE/SYSTEM PRODUCT

ToIucv: Acb Received:

13591920:

 Try IUCV connect -> To-IUCV (from Timer)

 Last touched: 103

 Device LOCIUCV:

 Type: PVM IUCV, Status: Connected

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

ToIucv: Acb Received:

13591920:

 IUCV interrupt -> To-IUCV (from External interrupt handler)

 Last touched: 187

 Interrupt type: Pending message

 Path id: 0

 MsgId 1586, Length 280, TrgCls: 00000000, Reply len 0, Flags 17

Figure 69. A Sample of an IUCV Trace (Part 1 of 3)

TCP/IP Traces

100 z/VM: TCP/IP Diagnosis Guide

Device LOCIUCV:

 Type: PVM IUCV, Status: Connected

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

PVM IUCV LOCIUCV : ToIucv UnpackReads: bytestomove = 276

 IP-up sees ICMP datagram,

 code 8, sub code: 0, source:

 HOST02, dest: HOST01, len: 256

PVM IUCV LOCIUCV : IUCV UnpackReads:

BlockHeader copied from InputPosition: 12672 278

PVM IUCV LOCIUCV : ToIUCV UnpackReads: PacketsInInBlock = 1

ToIucv: Acb Received:

13592440:

 Send datagram -> Device driver(LOCIUCV) (from To-IUCV)

 Last touched: 188

 Device LOCIUCV:

 Type: PVM IUCV, Status: Connected

 Envelope queue size: 1

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 1 0

PVM IUCV LOCIUCV : PackWrites packing packet with length 276

ToIucv: Acb Received:

13592440:

 IUCV interrupt -> To-IUCV (from External interrupt handler)

 Last touched: 188

 Interrupt type: Pending message completion

 Path id: 0

 audit: 0000

 Device LOCIUCV:

 Type: PVM IUCV, Status: Sending message

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

PVM IUCV LOCIUCV : ToIUCV write complete. PacketsInOutBlock = 1

PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 0 0

#CP EXT

14:37:39 09/26/90 Shutdown KILL TCB #1000 (INTCLIEN)

 TCP/IP service is being shut down

 Bytes: 0 sent, 0 received

 Max use: 0 in retransmit Q

1 active client, with 1 connection in use.

I will delay shutting down for 30 seconds, so that

RSTs and shutdown notifications may be delivered.

If you wish to shutdown immediately, without warning,

type #CP EXT again.

Server Telnet closed down. Bye.

ToIucv: Acb Received:

13591816:

 Device-specific activity -> To-IUCV (from Timer)

 Last touched: 217

 Device LOCIUCV:

 Type: PVM IUCV, Status: Connected

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

Figure 69. A Sample of an IUCV Trace (Part 2 of 3)

IUCV shutting down:

 Device LOCIUCV:

 Type: PVM IUCV, Status: Connected

 Envelope queue size: 0

 VM id: TCPIP2

 UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY

 Our PVM node: A

ToIucv: Severing path 0

UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"

COMMAND COMPLETE

ShutDown at 234.795 seconds

Figure 69. A Sample of an IUCV Trace (Part 3 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 101

PCCA

The PCCA group process combines PCCA handler and PCCA common routine

traces. It provides information about I/O operations to be performed on the

channel-attached LAN adapters. The trace output lists the device, type, CCW

address, CCW operation, number of bytes, and unit status of I/O requested

operations.

Figure 70 shows a sample of a PCCA trace in which an ACB (13715112) acquires

the home hardware address for link TR2 with ctrlcommand 04 on networktype 2,

adapter 1. Figure 70 also shows an ACB with an ARP address translation for IP

address 9.67.58.234. For more information about the commands used in this trace,

see “CCW” on page 246.

ToPcca3: Acb Received:

13715112:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 20

 IoDevice 0560

 Csw:

 Keys: E0, CcwAddress: 007B7118

 Unit Status: 0C, Channel Status: 00

 Byte Count: 20402

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: Received PCCA control packet:

PccaCtrlCommand: 4, PccaCtrlNetType2: 2,

PccaCtrlAdapter2: 1

PccaCtrlRetcode: 0, PccaCtrlSequence: 0, PccaCtrlFlags: 00

PccaCtrlHardwareAddress: 10005A6BAFDF

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2

PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 76

PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1

PCCA3 device LCS1: CallSio: Starting I/O on device 0560.

First command 02, UseDiag98 True

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

ToPcca3: Acb Received:

13715008:

 Send datagram -> PCCA3 common routine (from PCCA3 common routine)

 Last touched: 20

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

ToPcca3: Acb Received:

13715008:

 Send datagram -> Device driver(LCS1) (from UDP-request)

 Last touched: 23

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 1

 Address: 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0

PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 54 56

PCCA3 device LCS1: CallSio: Starting I/O on device 0561.

First command 01, UseDiag98 True

ToPcca3: Acb Received:

Figure 70. A Sample of a PCCA Trace (Part 1 of 2)

TCP/IP Traces

102 z/VM: TCP/IP Diagnosis Guide

The PCCA trace using the MORETRACE command provides the following

additional information for Pccactrl fields:

v Command

v Return code

v Net numbers

v Adapter numbers

v Flags.

Hardware addresses, IP headers, ICMP headers, and ARP headers are also

provided.

Figure 71 shows a sample of a PCCA trace using the MORETRACE command. The

following information is shown.

v ACB 13715216 receives a PCCA control packet for the first adapter on a

token-ring.

v The first command was 02 (read).

13715008:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 23

 IoDevice 0561

 Csw:

 Keys: E0, CcwAddress: 007B70C0

 Unit Status: 0C, Channel Status: 00

 Byte Count: 0

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: ToPcca write complete. PacketsInOutBlock = 1

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

ToPcca3: Acb Received:

13715008:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 23

 IoDevice 0560

 Csw:

 Keys: E0, CcwAddress: 007B7118

 Unit Status: 0C, Channel Status: 00

 Byte Count: 20422

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54

PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56

PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1

PCCA3 device LCS1: CallSio: Starting I/O on device 0560.

First command 02, UseDiag98 True

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

ToPcca3: Acb Received:

13715008:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 23

 IoDevice 0560

 Csw:

 Keys: E0, CcwAddress: 007B7118

 Unit Status: 0C, Channel Status: 00

 Byte Count: 20422

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54

Arp adds translation 9.67.58.234 = IBMTR: 10005A250858

PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56

PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1

PCCA3 device LCS1: CallSio: Starting I/O on device 0560.

First command 02, UseDiag98 True

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0

PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 101 104

PCCA3 device LCS1: CallSio: Starting I/O on device 0561.

First command 01, UseDiag98 True

Figure 70. A Sample of a PCCA Trace (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 103

v ACB 13714696 is an ARP request from the local host to IP address 9.67.58.234.

v The CCW is 01 (write). For more information about CCW codes, see Table 24 on

page 246

v The last ACB is the ARP response from 9.67.58.234. It provides ARP packet

information: hardware type (6), hardware addresses of both hosts, and IP

addresses.

Information about LLC, such as the source SAP (AA), the destination SAP (AA),

and protocol type (0806) is also shown.

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

ToPcca3: Acb Received:

13715216:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 20

 IoDevice 0560

 Csw:

 Keys: E0, CcwAddress: 00559118

 Unit Status: 0C, Channel Status: 00

 Byte Count: 20402

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: Received PCCA control packet:

PccaCtrlCommand: 4, PccaCtrlNetType2: 2,

PccaCtrlAdapter2: 0

PccaCtrlRetcode: 0, PccaCtrlSequence: 0, PccaCtrlFlags: 00

PccaCtrlHardwareAddress: 10005A6BB806

PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1

PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 76

PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1

PCCA3 device LCS1: CallSio: Starting I/O on device 0560.

First command 02, UseDiag98 True

PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0

 .

 .

 .

ToPcca3: Acb Received:

13714696:

 Send datagram -> Device driver(LCS1) (from UDP-request)

 Last touched: 23

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 1

 Address: 0560

Figure 71. A Sample of a PCCA Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

104 z/VM: TCP/IP Diagnosis Guide

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0

PCCA3 device LCS1: Sending envelope to PCCA:

 Access control field: 60

 Frame control field: 40

 Token ring dest address: FFFFFFFFFFFF

 Token ring src address: 90005A6BB806

 Routing info: 8220

 Destination SAP: AA

 Source SAP: AA

 Control: 03

 Protocol id:000000

 Ethernet type: 0806

 ARP packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 0

 ArpSenderHardwareAddr: 10005A6BB806

 ArpSenderInternetAddr: 9.67.58.233

 ArpTargetHardwareAddr: C53400D7C530

 ArpTargetInternetAddr: 9.67.58.234

PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 54 56

PCCA3 device LCS1: StartPccaOutputIo: OutputPosition is 56

PCCA3 device LCS1: CallSio: Starting I/O on device 0561.

First command 01, UseDiag98 True

PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0561

 .

 .

 .

ToPcca3: Acb Received:

13714696:

 Have completed I/O -> PCCA3 common routine (from PCCA3 handler)

 Last touched: 23

 IoDevice 0560

 Csw:

 Keys: E0, CcwAddress: 00559118

 Unit Status: 0C, Channel Status: 00

 Byte Count: 20422

 Device LCS1:

 Type: LCS, Status: Ready

 Envelope queue size: 0

 Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54

PCCA3 device LCS1: Received envelope from PCCA:

 Access control field: 18

 Frame control field: 40

 Token ring dest address: 10005A6BB806

 Token ring src address: 90005A250858

 Routing info: 02A0

 Destination SAP: AA

 Source SAP: AA

 Control: 03

 Protocol id:000000

 Ethernet type: 0806

Figure 71. A Sample of a PCCA Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 105

RAWIP

The RAWIP group process combines RAWIPREQUEST and RAWIPUP traces.

TCP

The TCP group process combines TCP congestion control, notify, retransmit,

round-trip, TCPDOWN, TCPREQUEST, and TCPUP traces.

TCPIP or TCP-IP

The TCPIP or TCP-IP group process combines TCP congestion control, IPDOWN,

IPREQUEST, IPUP, notify, retransmit, round-trip, TCPDOWN, TCPREQUEST, and

TCPUP traces.

UDP

The UDP group process combines UDPREQUEST and UDPUP traces.

Commonly Used Trace Options

The preceding sections have attempted to provide information and examples of the

various types of traces that can be obtained for the TCP/IP virtual machine. The

slightly more difficult task is to determine which trace options are complementary

and which are the most beneficial or most expensive in terms of obtaining viable

problem determination data. The table below provides a high-level overview of the

most commonly used trace options, along with brief explanations of the type of

events they generate and the “relative” cost of activating the trace option.

 Table 10. Commonly-used Trace Options

Option name TRACE output Addl MORETRACE output

ARP Maintenance of queue of

packets waiting for ARP

response. Errors in ARP

processing.

No output caused by received

ARP broadcasts.

All received ARP packets.

Can generate a lot of output

if much broadcast ARP traffic

on network.

 ARP packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 0

 ArpSenderHardwareAddr: 10005A250858

 ArpSenderInternetAddr: 9.67.58.234

 ArpTargetHardwareAddr: 10005A6BB806

 ArpTargetInternetAddr: 9.67.58.233

Arpin: Processing Arp packet:

 ArpHardwareType: 6

 ArpProtocolType: 2048

 ArpHardwareLen: 6

 ArpProtocolLen: 4

 ArpOp: 0

 ArpSenderHardwareAddr: 10005A250858

 ArpSenderInternetAddr: 9.67.58.234

 ArpTargetHardwareAddr: 10005A6BB806

 ArpTargetInternetAddr: 9.67.58.233

Arp adds translation 9.67.58.234 = IBMTR: 10005A250858

PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56

PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1

PCCA3 device LCS1: CallSio: Starting I/O on device 0560.

First command 02, UseDiag98 True

PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0560

Figure 71. A Sample of a PCCA Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

106 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

CLAW Information about CLAW read

and write channel program

processing. Start I/O and

write complete notifications.

CSW information on I/O

completions. Data from Sense

ID channel command

execution. Statistical

information about packets.

ACB information.

MORETRACE CLAW output

adds envelope and CLAW

control packet information, IP

datagram information, and

read / write channel program

information when I/O is

started.

CONGESTION Traces some aspects of

TCP-layer

“congestion-control”.

Usable as part of TCP or

TCPIP tracing; not useful by

itself.

No additional tracing

CONSISTENCYCHECKER Every 5 minutes, print various

queue sizes.

Useful to determine free pool

status in Version 1.

More detail.

MORETRACE doesn’t cost

much more than TRACE,

since output is only every 5

minutes.

HCH Hyperchannel device driver

message headers, some

return codes

Queue sizes, packet sizes,

I/O interrupts.

If Hyperchannel tracing is

needed, then MORETRACE

is worthwhile. That is, TRACE

alone isn’t too useful.

ICMP Received ICMP packets Additional information on

Redirect packets

IPDOWN Errors in ICMP packet

generation. Redirect

processing. Fragmentation of

outbound packets. Routing of

outbound packets.

IP headers of outbound

packets and fragments.

IPUP Internal IPUP activity

information, Reassembly of

fragments, Bad received

checksums, Information on

received datagrams, IP option

errors, and Packet forwarding.

Additional details on

reassembly and redirect. IP

headers of packets other than

TCP protocol.

Note: If IP tracing is required, it is almost always worthwhile to trace IPUP and IPDOWN

together.

In two sample traces of the same traffic, MORETRACE IPUP IPDOWN generated 2.5 times

as many lines of output as TRACE IPUP IPDOWN, mainly because of the multiple-line

tracing of outbound IP headers generated by MORETRACE IPDOWN.

TRACE IPUP output includes datagram id’s of incoming packets, useful for correlating with

network monitor tracing. MORETRACE IPDOWN must be used to get datagram id’s of

outgoing packets.

TCP/IP Traces

Chapter 7. TCP/IP Traces 107

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

IUCV IUCV driver (PVMIUCV,

SNAIUCV, IUCV, X25NPSI

devices) details, including

path establishment

No additional tracing

IUCVSIGNON IUCV driver, path

establishment only

No additional tracing

NOTIFY Tracing related to sending of

notifications to the internal

client (Telnet server) and

VMCF clients (Pascal

interface and direct VMCF

interface).

In addition, events involving

IUCV clients (socket interface

and direct IUCV interface) are

processed through TCNOTIF

PASCAL, so they will show up

here too, even though no

VMCF message is actually

sent.

Additional details.

In two sample traces of the

same traffic, MORETRACE

NOTIFY generated twice as

many lines of output as

TRACE NOTIFY. If

notifications are suspected to

be a problem, the extra

output is worthwhile.

PCCA LCS driver packet sizes,

block headers, I/O interrupts.

Can generate a lot of output if

there is a lot of broadcast

traffic on the network, even if

little activity is occurring

locally on the host.

Packet headers, SIO return

codes

PING Traces ping requests and

responses generated by the

PingRequest Pascal call or

PINGreq VMCF call.

No additional tracing

RAWIPREQUEST Traces requests using Raw IP

through the Pascal interface

or VMCF interface. Raw IP

routines include

v RawIpOpen (OPENrawip)

v RawIpClose (CLOSErawip)

v RawIpSend (SENDrawip)

v RawIpReceive

(RECEIVErawip)

IP packet headers as

supplied by application,

before they are completed by

the FillIpHeader routine.

In two sample traces of the

same traffic, MORETRACE

RAWIPREQUEST generated

1.6 times as many lines of

output as TRACE

RAWIPREQUEST. The extra

output is worthwhile.

RAWIPUP Messages pertaining to

queuing received IP packets

for applications using Raw IP

interface or raw sockets.

No additional tracing

Note: NOTIFY is also useful for looking at raw IP activity, since it traces

RAWIPpacketsDELIVERED notifications.

TCP/IP Traces

108 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

RETRANSMIT, REXMIT Retransmissions by local

TCP. Duplicate packets

received, indicating possibly

unnecessary retransmission

by foreign TCP.

No additional tracing

ROUNDTRIP “Round-trip” times, i.e. time

between sending TCP packet

and receiving

acknowledgment.

Not very useful by itself.

No additional tracing

SCHEDULER Lists the internal TCPIP

processes as they are called.

Listing is one per line.

Much more detail on why

each process is called.

MORETRACE SCHEDULER

is gives a good overall view

of what is happening in

TCPIP; quite useful as a

debugging tool.

SNMPDPI SNMP“sub-agent” tracing.

Lists MIB queries by the

SNMP agent.

No additional tracing

SOCKET Trace requests made through

IUCV socket interface, and

most responses.

A little extra tracing in bind()

processing

TCP Includes TCPREQUEST,

TCPDOWN, TCPUP,

ROUNDTRIP, NOTIFY,

REXMIT, and CONGESTION.

See individual entries.

MORETRACE TCP sets

detailed tracing for all the

above names.

TCPDOWN Trace information related to

outbound TCP packets, both

data packets and

acknowledgments.

More verbose listing, can be

twice as long as TRACE

TCPDOWN.

Much of the extra output is

redundant and verbose, and

is not worthwhile, especially if

a large data transfer is to be

traced.

TCPIP, TCP-IP Includes TCPREQUEST,

TCPDOWN, TCPUP,

ROUNDTRIP, NOTIFY,

REXMIT, CONGESTION,

IPDOWN, and IPUP

See individual entries.

MORETRACE TCPIP sets

detailed tracing for all the

above names.

TCP/IP Traces

Chapter 7. TCP/IP Traces 109

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

TCPREQUEST Information pertaining to

execution of the following

Pascal-interface and

VMCF-interface requests:

v TcpAbort (ABORTtcp)

v TcpClose (CLOSEtcp)

v TcpOpen and TcpWaitOpen

(OPENtcp)

v TcpSend (SENDtcp)

v TcpReceive (RECEIVEtcp)

v TcpStatus (STATUStcp)

v TcpFReceive and

TcpWaitReceive

(FRECEIVEtcp)

v TcpFSend and

TcpWaitSend (FSENDtcp)

v BeginTcpIp

(BEGINtcpIPservice)

v EndTcpIp

(ENDtcpIPservice)

v Handle (HANDLEnotice)

v IsLocalAddress

(IShostLOCAL)

Also traces requests

produced by the Version 1

socket interface module,

CMSOCKET C, for stream

sockets and initialization.

In two sample traces of the

same traffic, MORETRACE

TCPREQUEST generated 1.5

times as many lines of output

as TRACE TCPREQUEST.

But the extra detail, including

information on open calls,

and compact display of

TCB’s, is worthwhile.

TCPUP Information related to

processing of incoming TCP

packets.

In two sample traces of the

same traffic, MORETRACE

TCPUP generated 14 times

as many lines of output as

TRACE TCPUP.

This extra volume makes a

huge difference when tracing

a large data transfer. So

MORETRACE TCPUP is

probably unnecessary in the

first stage of gathering trace

information.

TCP/IP Traces

110 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

TELNET The Telnet server is a TCP/IP

application program that,

unlike other applications, runs

as a process in the TCPIP

virtual machine (the “internal

client”) instead of in its own

virtual machine. So tracing of

the Telnet server application

is enabled via the TRACE

and MORETRACE

commands used in the rest of

TCPIP.

MORETRACE output adds

tracing of data, including:

Data accepted from logical

devices, data presented to

logical devices, data sent to

TCP, data received from TCP,

data sent to *CCS, data

received from *CCS. Some

data is printed one byte per

line, which greatly increases

the number of lines of trace

output, though not

necessarily the space

occupied on disk or tape.

For most Telnet server

problems, MORETRACE

TELNET is probably a good

choice.

TIMER Information related to internal

timeout processing within

TCPIP. Probably useful only

for debugging internal

problems.

If a timer problem is

suspected, then

MORETRACE TIMER output

would be useful to a person

familiar with TCPIP internals.

Output may be 12 times as

large as TRACE.

UDPREQUEST Information pertaining to

execution of the following

Pascal-interface and

VMCF-interface requests:

v UdpClose (CLOSEudp)

v UdpOpen (OPENudp)

v UdpSend (SENDudp)

v UdpNReceive

(NRECEIVEtcp)

v UdpReceive

(RECEIVEudp)

Also traces requests

produced by the Version 1

socket interface module,

CMSOCKET C, for datagram

sockets.

In two sample traces of the

same traffic, MORETRACE

UDPREQUEST generated

2.5 times as many lines of

output as TRACE

UDPREQUEST. But the extra

detail, including display of

UCB’s, is worthwhile.

UDPUP Information about processing

of inbound UDP packets.

Useless without

MORETRACE.

Port number in following

message is wrong: UptoUDP:

Destination port # 65536108

The port number is only the

high-order halfword.

65536108 = X'03E8006C', so

port number is X'3E8' = 1000.

Note: NOTIFY is also useful for looking at UDP activity, since it traces

UDPdatagramDELIVERED notifications.

TCP/IP Traces

Chapter 7. TCP/IP Traces 111

Connection State

A connection state is a description of the status of a logical communication path

between two “sockets”. The terms used to describe this status vary according to the

perspective from which the connection state is viewed. The following sections

discuss the connection state as seen from the perspectives of the TCP layer,

Pascal or VMCF applications, and socket applications.

Connection State As Known by TCP

The TCP layer in the host at each end of a TCP connection keeps its own variable

containing the state of the connection, using the connection states defined in RFC

793. This is the state shown in NETSTAT output.

Ignoring state transitions, which do not tend to conform to these simplistic

definitions, the following table lists the connection states and what each typically

implies about the state of the connection. See section 3.2 of RFC 793 for more

information on connection states.

 Table 11. TCP Connection States

State name Typical Situation

LISTEN Waiting for a connection request from the address and port

listed in the Foreign Socket column of NETSTAT.

v “HOSTA..*” means waiting for a connection request from

any port on host HOSTA.

v “*..100” means waiting for a connection request from port

100 on any host.

v “*..*” means waiting for a connection request from any

port on any host.

If the application uses the Pascal interface or VMCF

interface, it has done a TcpOpen (or TcpWaitOpen) with an

initial pseudo-state of LISTENING.

If the application uses the socket interface, from C or via

IUCV, it has done a listen(), and the listen backlog has not

been reached.

SYN-SENT The application has done an “active open” and is waiting for

a response from the foreign server.

If the application uses the Pascal interface or VMCF

interface, it has done a TcpOpen (or TcpWaitOpen) with an

initial pseudo-state of TRYINGtoOPEN.

If the application uses the socket interface, from C or via

IUCV, it has done a connect().

SYN-RECEIVED Represents a condition where TCP is waiting for a

confirming connection request acknowledgement after

having received and sent a connection request. This

sometimes means that a SYN was received on a connection

in LISTEN state, but connection establishment hasn’t been

able to proceed further because a routing problem prevents

the response from reaching the foreign host.

ESTABLISHED Connection is completely established. Both sides can send

and receive data. This is the normal state for the data

transfer phase of a connection.

TCP/IP Traces

112 z/VM: TCP/IP Diagnosis Guide

Table 11. TCP Connection States (continued)

State name Typical Situation

FIN-WAIT-1 Application has issued a TcpClose or close(). A FIN packet

was sent but not acknowledged, and a FIN hasn’t been

received from the foreign host.

FIN-WAIT-2 Application has issued a TcpClose or close(). FIN packet

was sent and has been acknowledged. TCP is now waiting

for the foreign host to send a FIN.

This is the state a connection enters when the application

closes but the application on the other end doesn’t close.

There is no timeout in this state, since the FIN has been

acknowledged.

If the foreign host sends an ACK packet in response to the

the local host’s FIN and then goes away without sending an

RST, or if the RST is lost, then the connection will stay in

this state for an indefinite period of time (until the application

aborts the connection or terminates).

In this state, data can be received but not sent. Some

applications may intentionally put the connection into this

state because they plan to send data in one direction.

However, in most cases, this is not a long-term state.

Usually, persistence of this state indicates an error

condition.

CLOSE-WAIT The local host has received a FIN from the foreign host and

has acknowledged it, but the application hasn’t issued a

TcpClose or close().

In this state, data can be sent but not received. Some

applications may intentionally put the connection in this

state because they plan to send data in one direction.

However, in most cases, this is not a long-term state.

Usually, persistence of this state indicates an error

condition.

CLOSING Represents waiting for a connection termination request

acknowledgement from the remote TCP. This state (and the

LAST-ACK state) indicates that both sides have closed the

connection. Data cannot be sent in either direction.

LAST-ACK Represents waiting for an acknowledgement of the

connection termination request previously sent to the remote

TCP (which included an acknowledgement of the remote

TCP’s connection termination request). This state (and the

CLOSING state) indicates that both sides have closed the

connection. Data cannot be sent in either direction.

TIME-WAIT Both sides have closed the connection, and all packets

have been acknowledged. The connection stays in this state

for 2 * MSL (MSL = 60 seconds) as required by the

protocol specification, to ensure that foreign host has

received the acknowledgment of its FIN.

In VM TCP/IP, connections in TIME-WAIT state do not

usually appear in the output from the NETSTAT command.

The ALLCONN or TELNET parameters must be supplied on

the NETSTAT command to see connections in this state.

TCP/IP Traces

Chapter 7. TCP/IP Traces 113

Table 11. TCP Connection States (continued)

State name Typical Situation

CLOSED The connection is completely closed.

In TCP/IP for VM, connections in CLOSED state do not

usually appear in the output from the NETSTAT command.

The ALLCONN parameter must be supplied on the

NETSTAT command to see connections in this state.

Connection State As Known by Pascal or VMCF Applications

Pascal and direct VMCF applications do not see the actual TCP states described in

Table 11. Rather, the connection state in the StatusInfoType record and in

CONNECTIONstateCHANGED notifications is expressed as a “pseudo-state”. The

pseudo-state contains the connection state information needed by an application

program, while hiding protocol details that are not important to an application.

 Table 12. Connection Pseudo-states

State name Meaning, from CMCOMM

COPY

Corresponding TCP states

LISTENING Waiting for a foreign site to

open a connection

LISTEN

TRYINGtoOPEN Trying to contact a foreign

site to establish a connection.

SYN-SENT, SYN-RECEIVED

OPEN Data can go either way on

the connection

Either:

v ESTABLISHED

v CLOSE-WAIT, but input

data still queued for

application

SENDINGonly Data can be sent out but not

received on this connection.

This means that the foreign

site has done a one-way

close.

CLOSE-WAIT, and no input

data queued for application

RECEIVINGonly Data can be received but not

sent on this connection. This

means that the client has

done a one-way close.

Either:

v FIN-WAIT-1

v FIN-WAIT-2

v LAST-ACK, but input data

still queued for application

v CLOSING, but input data

still queued for application

v TIME-WAIT, but input data

still queued for application

CONNECTIONclosing Data may no longer be

transmitted on this

connection since the TCP/IP

service is in the process of

closing down the connection.

Either:

v LAST-ACK, and no input

data queued for

application

v CLOSING, and no input

data queued for

application

v TIME-WAIT, and no input

data queued for

application

TCP/IP Traces

114 z/VM: TCP/IP Diagnosis Guide

Table 12. Connection Pseudo-states (continued)

State name Meaning, from CMCOMM

COPY

Corresponding TCP states

NONEXISTENT The connection no longer

exists.

CLOSED

Connection State As Known by Socket Applications

The socket interface does not allow for programs to see explicit connection states.

The connection state is inferred from the response to various socket calls.

v A successful return from connect() means that the connection is in an OPEN

pseudo-state. The socket returned from a successful accept() call is also

assumed to be in an OPEN pseudo-state.

v A return code of 0 from read(), recv(), etc., indicates that foreign host has done

one-way close. This is like SENDINGonly pseudo-state.

v A return code of -1 from read(), recv(), etc., with an errno value of

ECONNABORTED, ECONNRESET, or ETIMEDOUT, indicates that the

connection has been abruptly closed (reset) for the given reason.

Note that internal TCP/IP traces show CONNECTIONstateCHANGED notifications

being sent to socket programs. In fact, the notification is converted to the proper

socket state information so that the program may find out about the state change

on its next socket call.

Traceroute Function (TRACERTE)

The Traceroute function sends UDP requests with varying Time-to-Lives (TTL) and

listens for TTL-exceeded messages from the routers between the local host and the

foreign host. Traceroute uses RAW sockets, so you must have OBEYFILE authority

to use this command. The range of port numbers that Traceroute uses are normally

invalid, but you can change it if the target host is using a nonstandard UDP port.

To debug network problems, use the TRACERTE command. See the TCP/IP User’s

Guide for a complete format of the TRACERTE command.

�� TRACERTE ?

host_name
 ��

The following are examples of using the TRACERTE command:

tracerte cyst.watson.ibm.com

Trace route to CYST.WATSON.IBM.COM (9.2.91.34)

1 (9.67.22.2) 67 ms 53 ms 60 ms

2 * * *

3 (9.67.1.5) 119 ms 83 ms 65 ms

4 (9.3.8.14) 77 ms 80 ms 87 ms

5 (9.158.1.1) 94 ms 89 ms 85 ms

6 (9.31.3.1) 189 ms 197 ms *

7 * * (9.31.16.2) 954 ms

8 (129.34.31.33) 164 ms 181 ms 216 ms

9 (9.2.95.1) 198 ms 182 ms 178 ms

10 (9.2.91.34) 178 ms 187 ms *

> Note that the second hop does not send Time-to-live exceeded

> messages. Also, we occasionally lose a packet (hops 6,7, and 10).

TCP/IP Traces

Chapter 7. TCP/IP Traces 115

Ready;

tracerte 129.35.130.09

Trace route to 129.35.130.09 (129.35.130.9)

1 (9.67.22.2) 61 ms 62 ms 56 ms

2 * * *

3 (9.67.1.5) 74 ms 73 ms 80 ms

4 (9.3.8.1) 182 ms 200 ms 184 ms

5 (129.35.208.2) 170 ms 167 ms 163 ms

6 * (129.35.208.2) 192 ms !H 157 ms !H

> The network was found, but no host was found

tracerte 129.45.45.45

Trace route to 129.45.45.45 (129.45.45.45)

1 (9.67.22.2) 320 ms 56 ms 71 ms

2 * * *

3 (9.67.1.5) 67 ms 64 ms 65 ms

4 (9.67.1.5) 171 ms !N 68 ms !N 61 ms !N

> Could not route to that network.

Traceroute uses the site tables for inverse name resolution rather than the domain

name server. If a host name is found in the site table, it is printed along with its IP

address.

tracerte EVANS

Trace route to EVANS (129.45.45.45)

1 BART (9.67.60.85) 20 ms 56 ms 71 ms

2 BUZZ (9.67.60.84) 55 ms 56 ms 54 ms

3 EVANS (9.67.30.25) 67 ms 64 ms 65 ms

TCP/IP Traces

116 z/VM: TCP/IP Diagnosis Guide

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool

This chapter describes how to use the IPFORMAT packet trace formatting tool to

format and analyze network packet data that has been previously captured using

the TRSOURCE and TRACERED commands.

The chapter is broken down into the following subjects:

v IPFORMAT Command Overview

v IPFORMAT Command

v Using IPFORMAT to View Packet Data

v IPFORMAT VIEW Function Keys

v IPFORMAT Subcommands

IPFORMAT Command Overview

Use IPFORMAT to format raw IP packet trace data that has been previously

collected and processed using the TRSOURCE and TRACERED commands. Once

the IPFORMAT has formatted the raw trace data, the data can be viewed in various

summary and detailed forms. IPFORMAT is capable of formatting the following

protocols:

v QDIO and ETHERNET

v IP (IPv4 and IPv6)

v ICMP (IPv4 and IPv6)

v RPC, NFS, FTP, TELNET, SMTP, DNS, RIP, ARP, and TFTP

The raw trace data that is used by IPFORMAT is captured using the CP

TRSOURCE command and the CP TRACERED command and is saved in a file

that is used as input to IPFORMAT. There are two methods for capturing the raw

trace data:

v TCP packet trace can be collected by using the PACKETTRACESIZE statement

to set a non-zero PACKETTRACESIZE value and then running a TRSOURCE

TYPE GT BLOCK trace. (More information about capturing TCP packet trace

data using this method can be found under the PACKETTRACESIZE statement

in z/VM: TCP/IP Planning and Customization).

v In a guest LAN environment, packet trace data can be captured using a

TRSOURCE TYPE LAN trace. (More information about using a TRSOURCE

TYPE LAN trace to capture packet data can be found in Troubleshooting a

Virtual Switch or Guest LAN chapter in z/VM: Connectivity.)

© Copyright IBM Corp. 1987, 2005 117

|

|

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

IPFORMAT Command

Format

Purpose

Use IPFORMAT to format raw IP packet trace data that has been previously

collected and processed using the TRSOURCE and TRACERED commands.

Operands

in_fn

The file name of a file that contains raw trace data to be processed, or the

name of an already converted data file that is to be viewed.

in_ft

The file type of raw data file to be processed, or that of an already converted

data file that is to be viewed.

 When no file type is specified, a file type of TRCDATA is assumed and

IPFORMAT attempts to format the data in such a file.

 When a file type of IPFDATA is specified, IPFORMAT verifies the file contains

already-converted packet information and then presents that information for

review in an IPFORMAT-managed XEDIT session; format processing is not

performed.

in_fm

The file mode of the file to be processed or viewed. The default is asterisk (*),

which signifies that the first file in the search order that matches the specified

name and type is to be used.

Options

OUTFILE out_fn out_ft out_fm

Identifies an output file into which converted IP packet data is to be written. By

default, converted data is written to the file in_fn IPFDATA out_fm (where the

��

IPFORMAT

in_fn
 TRCDATA *

*

in_ft

in_fm

(

Options

��

Options:

 OUTFILE in_fn IPFDATA fm_r/w

IPFDATA

fm_r/w

OUTFILE

out_fn

fm_r/w

out_ft

out_fm

 VIew

NOView

IPFORMAT

118 z/VM: TCP/IP Diagnosis Guide

||

|

|

|||

|
|
|

|
|

|

||

|

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|
|

file name in_fn is that of the given input file, and out_fm is the first available

R/W file mode). The OUTFILE option and its operands can be omitted when the

output defaults are used.

out_fn

The file name of the file that is to contain converted packet information.

out_ft

The file type of the file that is to contain converted packet information. The

default file type is IPFDATA.

out_fm

The file mode of the file that is to contain converted packet information. The

default file is to use the first available file mode that has R/W status.

VIew

Indicates that formatted packet information should be displayed in an

IPFORMAT-managed Xedit session. Such information is initially presented in a

summary format, from which specific packets or groups of packets can be

selected for detailed inspection. By default, IPFORMAT presents packet

information immediately after raw trace data has been converted. See the

“Using IPFORMAT to View Packet Data” on page 120 for more information

about these capabilities.

NOView

Indicates that trace data should be converted only, and not presented for

evaluation.

IPFORMAT Configuration File

This section describes the statements used to configure the IPFORMAT program.

Configuration information for the IPFORMAT tool is contained in the IPFORMAT

CONFIG file. A sample configuration file is shipped as IPFORMAT SCONFIG. This

must be renamed or copied over to IPFORMAT CONFIG before using the

IPFORMAT tool. The IPFORMAT CONFIG file defines color attributes and various

descriptive substitution values that are to be used when formatted protocol headers

and data are displayed by the IPFORMAT utility.

Within the configuration file blanks and <end-of-line> are used to delimit tokens. All

characters to the right of, and including a semicolon are treated as a comment.

The format for each configuration entry is:

��

:groupname.

�

statement

:END groupname.

��

Where:

:groupname

Is a tag that names a group of configuration statements, and which signifies the

beginning of each group. Group names that are recognized by the IPFORMAT

program are RPCTYPES, SSESSIONCOLORS, TELNETOPTIONS, and

TRANSLATE.

IPFORMAT

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 119

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|||||||||||||||||

|

|

|
|
|
|
|

statement

Is a configuration statement associated with the previously names group.

Details about the format of statements for a given group are documented below.

:END groupname.

Is a terminating tag for a names statement group.

 Descriptions of configuration group names recognized by IPFORMAT:

:RPCTYPES.

The RPCTYPES group defines RPC programs and NFS procedures that

correspond to a given program or procedure number when displayed by the

IPFORMAT program.

:SESSIONCOLORS.

The SESSIONCOLORS group defines the text colors to be used when data for

a given header is displayed in the formatted data view.

:TELNETOPTIONS:

The TELNETOPTIONS group defines descriptive text to be displayed by the

IPFORMAT utility for a given telnet option number.

:TRANSLATE.

The TRANSLATE group defines the TCP/IP translation table to be used for

converting captured trace data between EBCDIC and ASCII. The specified

translation table must have a file type of TCPXLBIN. The default is to use the

standard translation table (STANDARD TCPXLBIN).

Note: For examples of the use of these configuration group names, refer to the

sample IPFORMAT configuration file (shipped as IPFORMAT SEXEC).

Using IPFORMAT to View Packet Data

The Packet Summary View

After raw trace data has been formatted by the IPFORMAT command, it can be

viewed in an IPFORMAT-managed Xedit session for analytical purposes. When

viewed in this manner, IP packet information is initially presented in summary form,

as illustrated here:

IPFORMAT

120 z/VM: TCP/IP Diagnosis Guide

|
|
|

|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

This Packet Summary view presents a summary of IPv4 packets. Each packet from

the trace data file has been formatted as a single data record, with certain,

preselected attributes displayed in distinct columns. The attributes summarized for

each packet are, in order:

v A numeric packet identifier

v The size of the packet

v An abbreviated timestamp

v The source socket

v The destination socket

v A protocol interpretation

v Application name

From this summary view, one or more packets can be selected for detailed

inspection, and provides information about each header component of the packet,

as well as any contained data. Packets can be selected for this detailed view on an

individual basis or through the use of one or more IPFORMAT-provided filters. For

more information about how packets can be selected for detailed inspection, see

“IPFORMAT Subcommands” on page 126 and “IPFORMAT VIEW Function Keys”

on page 124.

This next screen image is an example of a packet summary for IPv6 data:

Figure 72. Packet Summary of IPv4 Packets

IPFORMAT

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 121

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|

The Packet Detail View

Once a packet has been selected for detailed inspection, the content of that packet

is presented using the Packet Detail view. This view provides a formatted display of

header information contained within a packet, as well as any data it contains. The

data portion is presented in hexadecimal form, for which either an ASCII or EBCDIC

interpretation can be selected.

Attributes for a given packet are also presented at the beginning (top) of the Packet

Detail view. The attributes cited are:

v A packet ID

v Packet arrival time and relative time information

v Packet size information

When multiple packets have been selected for inspection, IPFORMAT provides the

ability to traverse the chain of selected packets and view the details of each on an

individual basis.

The screen image that follows shows a portion of the information presented for a

packet using the Packet Detail view. The attributes section and several formatted

headers can be seen:

Figure 73. Packet Summary of a mix of IPv4 and IPv6 packets

IPFORMAT

122 z/VM: TCP/IP Diagnosis Guide

|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

Figure 74. Packet Detail of an ICMP Packet (Part 1 of 3)

Figure 74. Packet Detail of an ICMP Packet (Part 2 of 3)

IPFORMAT

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 123

|

|
|
|
|

The previous screen image shows the remaining portion of information for this

same packet. Packet data is presented last, after the Captured Data heading, and

is viewed here in ASCII format.

Note that in the data portion of the preceding screen image, the values in the

left-most column are not intrinsic to data within this packet, but are offset values

determined by IPFORMAT. The first value indicates the offset of data from the end

of the last formatted header (this example is from the end of the TCP (Transmission

Control Protocol) header. The second, parenthetical value indicates the offset of the

data from the beginning of the packet.

IPFORMAT VIEW Function Keys

This section describes the functions that are assigned to the PF keys when

IPFORMAT is invoked. Two distinct function groups are provided, based on whether

the Packet Summary view or the Packet Detail view is in effect. The PF key

functions assigned for each view are explained in more detail here.

Packet Summary PF Keys

The table that follows shows the functions that are assigned to PF keys when the

Packet Summary view is selected:

 Table 13.

Key Function

PF1 Displays a help menu.

Figure 74. Packet Detail of an ICMP Packet (Part 3 of 3)

IPFORMAT

124 z/VM: TCP/IP Diagnosis Guide

|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

||

||

||

Table 13. (continued)

Key Function

PF2 Visually identifies (highlights) a packet for

detailed inspection. Selected packets are

then filtered as a group for further

examination when <Enter> is pressed.

PF3 Ends the packet display session.

PF4 Returns to the previous summary menu, prior

to having performed the most recent filter

action (if any).

PF5 Scrolls the screen to the left.

PF6 Scrolls the screen to the right.

PF7 Scrolls backward one screen length.

PF8 Scrolls forward one screen length.

PF9 Filters packets on a column (and in some

cases, a partial-column), basis. All packets

having identical data for the selected column

value are filtered for detailed examination.

PF10 Toggles the cursor between the command

line and the packet record area.

PF11 Initiates an editing session of the currently

displayed data, after having placed that data

in a temporary file.

PF12 Retrieves the last command that was

entered.

Packet Detail PF Keys

The table that follows shows the functions that are assigned to PF keys when the

Packet Detail view is selected:

 Table 14.

Key Function

PF1 Displays the help menu.

PF2, PF4, and PF9 No function.

PF3 Returns to the current Packet Summary view.

PF5 Changes the detailed view to that for the

previous available packet (if any) of the

selected group

PF6 Changes the detailed view to that for the

next available packet (if any) of the selected

group

PF7 Scrolls backward one screen length.

PF8 Scrolls forward one screen length.

PF9 Toggles between the ASCII or EBCDIC data

representation.

PF10 Toggles the cursor between the command

line and the packet record area.

IPFORMAT

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 125

|

||

||
|
|
|

||

||
|
|

||

||

||

||

||
|
|
|

||
|

||
|
|

||
|
|

|

|
|

||

||

||

||

||

||
|
|

||
|
|

||

||

||
|

||
|

Table 14. (continued)

Key Function

PF11 Initiates an editing session of the currently

displayed data, after having placed that data

in a temporary file.

PF12 Retrieves the last command that was

entered.

IPFORMAT Subcommands

IPFORMAT provides several different subcommands to assist with the analysis of

formatted packet information, as well as to save specific portions of that information

in readable form for later reference.

To invoke an IPFORMAT subcommand, simply type the command on the command

line. Descriptions of available subcommands follow.

FILTER Subcommand

Format

Purpose

Use the FILTER subcommand to select one or more packets from the summary

view for detailed display. Packet selection criteria is determined using one of the

FILTER operands that follows. Sequential FILTER subcommands can be used as

needed; isolate packets to those that share specific attributes.

Operands

Highlight

Selects packets that have been identified on an individual basis through use of

the Highlight PF key. The HIGHLIGHT filter is the default.

IP Selects packets based on a source IP address, destination IP address, or both

such addresses.

��

FILter
 HIghlight

IP

ipaddr

BEtween

ipaddr1

ipaddr2

FRom

ipaddr

TO

ipaddr

POrt

portnum

BEtween

portnum1

portnum2

FROM

portnum

TO

portnum

TIme

timestamp

PRotocol

protoname

APplication

applname

REset

��

IPFORMAT

126 z/VM: TCP/IP Diagnosis Guide

||

|
|
|

|

||

||
|
|

||
|
|

|
|

|
|
|

|
|

|

|
||

|
|
|
|
|

|

|
|
|

||
|

BEtween

Specifies that packet selection is to be based on the provided source and

destination IP addresses. That is, only packets that have travelled between the

designated hosts are selected.

FRom

Specifies that packet selection is to be based on the provided source IP

address.

TO

ipaddr, ipaddr1, ipaddr2

A host IP address (or addresses) on which IP filtering is to be based.

POrt

Selects packets based on a source port number, destination port number, or

both such numbers.

BEtween

Specifies that packet selection is to be based on the provided source and

destination port numbers. That is, only packets that have travelled between the

designated hosts are selected.

FRom

Specifies that packet selection is to be based on the provided source port

number.

TO

Specifies that packet selection is to be based on the provided destination port

number.

portnum, portnum1, portnum2

A TCP or UDP host port number (or numbers) on which port filtering is to be

based.

TIme

Selects packets based on the time that they were received. Only packets whose

timestamp matches the timestamp provided (or whose timestamp contain a

match if only a partial timestamp is provided) are selected for presentation.

timestamp

The time (in the format hh:mm:ss) on which time filtering is to be based.

PRotocol

Selects packets based on a specific transport protocol. Only packets associated

with this protocol are selected for presentation.

protoname

The name of the transport protocol to be used for filtering (for example: TCP,

UDP, or ICMP).

APplication

Selects packets based on a specific application name. Only packets associated

with this application are selected for presentation.

applname

The name of an application to be used for filtering (for example: RPC, NFS,

FTP, TELNET, SMTP, DNS, RIP, or TFTP).

REset

Cancels all active filters, and restores an unfiltered packet summary. When the

RESET subcommand is used, all filtered views are lost.

FILTER

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 127

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

VIEW Subcommand

Format

Purpose

Use the VIEW subcommand to display detailed information for selected packets.

Operands

pktnum

Defines a packet number. The formatted data for the packet with this number

should be displayed.

ALL

Specifies that the formatted packet data for all packets should be displayed.

HEADER Subcommand

Format

Purpose

Use the HEADER subcommand to limit the display of formatted information to that

associated with a specific type of packet header, or to restore the display of

previously suppressed information for a specified type of header.

Operands

SHOW

Specifies that information associated with the indicated header should be

displayed, if it is not already displayed. If such information is already displayed,

then no change is made to the current display of packet data.

��

VIEW

 (1)

pktnum

All

��

Notes:

1 When no operands are specified, packets that have been selected using

the Highlight filter are displayed.

�� Header SHOW

SHOWONLY

ALL

HIDE

APP

DATA

ETH

ICMP

IP

LAN

QDIO

TCP

UDP

 ��

VIEW

128 z/VM: TCP/IP Diagnosis Guide

|||||||||||||||||||

|

|

||
|
|
|

||

|
|
|

|

|
||

|
|

|

|
|
|

|
|

|

|
||

|
|
|
|

|

|
|
|
|

SHOWONLY

Specifies that information associated with only the indicated header should be

displayed. Information associated with any other type of header is suppressed.

HIDE

Specifies that information associated with the indicated header should be

suppressed, it is not already suppressed. If such information is already

suppressed, then no change is made to the current display of packet data.

ALL

Specifies that all header information is to be shown or hidden.

APP

Specifies that application header information is to be shown or hidden.

DATA

Specifies that the data portion of a packet is to be shown or hidden.

ETH

Specifies that Ethernet header information is to be shown or hidden.

ICMP

Specifies that only ICMP header information is to be shown or hidden.

IP Specifies that only IP header information is to be shown or hidden.

LAN

Specifies that only information from the LAN trace block header is to be shown

or hidden.

QDIO

Specifies that QDIO header information is to be shown or hidden.

TCP

Specifies that TCP header information is to be shown or hidden.

UDP

Specifies that UDP header information is to be shown or hidden.

SAVE Subcommand

Format

Purpose

Use the SAVE subcommand to write currently displayed summary or formatted

header data to a CMS file.

��

SAVe
 in_fn FMTDATA A

FMTDATA

A

fname

A

ftype

fmode

��

VIEW

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 129

|||||||||||||||||||||||||||||||||||||||

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

||

|
|
|

|
|

|
|

|
|

|

|
||

|
|
|

Operands

fname

The file name of the file in which data is to be saved. The default is to use the

same file name as that of the original input file.

ftype

The file type of the file in which data is to be saved. The default file type is

FMTDATA.

fmode

The file mode of the file in which data is to be saved. The default is to use the

first available file mode that has R/W status.

APPEND Subcommand

Format

Purpose

Use the APPEND subcommand to write currently displayed summary or formatted

header data to an existing CMS file.

Operands

fname

The file name of the file to which data is to be appended. If no file name is

specified, the default is to use the file identifier that is associated with the most

recent SAVE subcommand. If no such file ID exists, then the default is to use

the same file name as that of the original input file.

ftype

The file type of the file to which data is to be appended. The default file type is

FMTDATA.

fmode

The file mode of the file to which data is to be appended. The default is to use

the first available file mode that has R/W status.

��

APPend

 (1)

save_file_ID

(2)

in_fn

FMTDATA

fm r/w

FMTDATA

fm r/w

fname

fm r/w

ftype

fmode

��

Notes:

1 If the file identifier is omitted, the file ID associated with the most recent

SAVE subcommand (if any) is used for the APPEND operation.

2 If the specified file does not exist, the file is first created and data is then

written to that file (that is, the same action is taken if the SAVE

subcommand had been issued).

SAVE

130 z/VM: TCP/IP Diagnosis Guide

||

|

|

||
|

||
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
||

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

Usage Notes

1. If the file identifier is omitted, the file ID associated with the most recent SAVE

subcommand (if any) is used for the APPEND operation.

2. If the specified file does not exist, the file is first created and data is then written

to that file (that is, the same action is taken as if the SAVE subcommand had

been issued).

SAVE

Chapter 8. Using IPFORMAT Packet Trace Formatting Tool 131

|
|
|

|
|
|

SAVE

132 z/VM: TCP/IP Diagnosis Guide

Chapter 9. FTP Traces

This chapter describes File Transfer Protocol (FTP) traces, including the relationship

between FTP user and server functions. This chapter also describes how to activate

and interpret FTP client and server traces.

FTP Connection

A control connection is initiated by the user-Protocol Interpreter (PI) following the

Telnet protocol (x) and the server-Protocol Interpreter (PI) response to the standard

FTP commands. Figure 75 shows the relationship between user and server

functions.

Note: PI is the Protocol Interpreter and DTP is the Data Transfer Process. The

data connection can be used in either direction and it does not have to be

active.

Once the operands from the data connections have been transmitted, the user-DTP

must be in listen status on the specified data port. The server initiates the data

connection using the default data port requested by the user. For VM FTP

implementations, the client issues a PORT command. The port is then assigned by

TCPIP after an open request. The format of the PORT command is:

�� PORT h1.h2.h3.h4.p1.p2 ��

The only operand for the PORT command is:

Operand Description

h1.h2.h3.h4.p1.p2 Is the address space for the default data port. The

port specification is a conventional IP address to

 ┌─────────────────┐

 │ ┌─────────────┐ │ ┌──────────┐

 │ │ User │�┼───�│ User │

 │ │ Interface │ │ └──────────┘

 │ └─────────────┘ │

 │ � │

 ┌──────────────┐ │ � │

 │ ┌──────────┐ │ FTP Commands │ ┌─────────────┐ │

 │ │ Server │�┼─────────────────┼�│ User │ │

 │ │ PI │ │ FTP Replies │ │ PI │ │

 │ └──────────┘ │ │ └─────────────┘ │

 │ � │ │ � │

 │ � │ │ � │

┌──────────┐ │ ┌──────────┐ │ Data │ ┌─────────────┐ │ ┌──────────┐

│ File │�───┼�│ Server │�┼─────────────────┼�│ User │�┼───�│ File │

│ System │ │ │ DTP │ │ Connection │ │ DTP │ │ │ System │

└──────────┘ │ └──────────┘ │ │ └─────────────┘ │ └──────────┘

 └──────────────┘ └─────────────────┘

 FTP Server FTP User

Figure 75. The FTP Model

© Copyright IBM Corp. 1987, 2005 133

which a 16 bit TCP port address is concatenated,

where each byte of the port address value is

represented using separate decimal numbers

(p1.p2). For example, the port specification

9.67.58.226.4.72 represents (decimal port) 1096 on

the host with IP address 9.67.58.226.

The server initiates, maintains, and closes the data connection. However, when a

user transmits data, an end of file (EOF) closes the data connection.

FTP Client Traces

The following sections describe how to activate FTP client traces and interpret the

output.

Activating Traces

FTP client traces are activated by specifying the TRACE operand in addition to the

usual processing operands on invocation of the FTP command. Tracing can also be

activated interactively once an FTP session has been established by using the

DEBUG subcommand of FTP. The following is the format for the FTP command

using the TRACE option:

�� FTP foreignhost

portnumber
 (

TRACe
 ��

For information on all of the possible operands of the FTP command, see the

TCP/IP User’s Guide.

The operands for the FTP command are:

Operands Description

foreignhost Specifies the name of the foreign host to which you

are connecting. The host may be specified by its

host name or internet address.

portnumber Specifies the number of the port to request

connection to. This operand is usually used for

system testing only.

TRACe Starts the generation of tracing output. TRACE is

used to assist in debugging.

To enable or disable the trace mode interactively, use the DEBUG subcommand of

FTP. The format of the DEBUG subcommand is:

�� DEBUG ��

The DEBUG subcommand has no operands.

File Transfer Protocol Traces

134 z/VM: TCP/IP Diagnosis Guide

Trace output is directed to the virtual machine console.

For more information about the FTP command and DEBUG subcommand, see the

TCP/IP User’s Guide.

Trace Output

The output from FTP traces shows the sequence of commands requested by the

TCP/IP user. Transferred data is not traced.

You can relate FTP client and server traces if the connection has been interrupted

or closed at the client’s request or initiated by the server. TCP requests that are

traced by the client program include:

v TcpOpen

v BeginTcpIp

v TcpWaitReceive

v TcpWaitSend.

The messages issued by FTP are referenced in RFC 959. The first five significant

digit values for FTP return codes are:

1yz Positive preliminary reply

2yz Positive completion reply

3yz Positive intermediate reply

4yz Transient negative completion reply

5yz Permanent negative completion reply.

Figure 76 shows a sample of an FTP client trace. In the trace, input from the

keyboard or a file is preceded by:

===

Information that the FTP client is sending over the control connection is preceded

by:

>>>

Action taken by the FTP client program is preceded by:

==>

The other statements in the trace flow are self-explanatory and can be found in the

source code of the FTP modules.

File Transfer Protocol Traces

Chapter 9. FTP Traces 135

FTP 9.67.43.126 TRACE

VM TCP/IP FTP V2R4

about to call BeginTcpIp

Connecting to 9.67.43.126, port 21

SysAct 0 21 155396990 CC -1

==> Active open to host 9.67.43.126 port 21

from host 0 port 65535

In SysRead, calling TcpWaitReceive with args: 0 00035BD4

65535

In SysRead, TcpWaitReceive returned: 131

220-FTPSERVE at HOSTVM.ENDICOTT.IBM.COM, 08:56:14 EDT TUESDAY 10/02/97

220 Connection will close if idle for more than 5 minutes.

GetReply returns 220

USER (identify yourself to the host):

===tcpusrx

>>>USER tcpusrx

In SysSendFlush, calling TcpWaitSend with args: 0 00034260

14

In SysSendFlush, TcpWaitSend returned: OK

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 27

331 Send password, please

GetReply returns 331

Password:

===________ (non-display entry)

>>>PASS ********

In SysSendFlush, calling TcpWaitSend with args: 0 00034260 13

In SysSendFlush, TcpWaitSend returned: OK

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 56

230 SYLVAIN logged in; working directory = SYLVAIN 191

GetReplCodeText returns 230 230 SYLVAIN logged in; working directory = SYLVAIN

191

leaving dologin

Figure 76. A Sample of an FTP Client Trace (Part 1 of 2)

File Transfer Protocol Traces

136 z/VM: TCP/IP Diagnosis Guide

The following describes the sequence of major events in the FTP client trace

sample output:

1. The connection to the remote host is opened through the FTP server’s listen

port.

Trace Item Description

9.67.43.126 Address space of the remote host server.

21 Port 21, which is used for FTP connections.

Command:

===get example.fileone

Filename: "$FTCOPY$.FTPUT1.A"

==> Passive open

Passive open successful: Fd = 3, TcpId = 1

>>>PORT 9,67,58,226,4,72

In SysSendFlush, calling TcpWaitSend with args: 0 00034260 23

In SysSendFlush, TcpWaitSend returned: OK

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 21

200 Port request OK

GetReply returns 200

>>>RETR example.fileone

In SysSendFlush, calling TcpWaitSend with args: 0 00034260 22

In SysSendFlush, TcpWaitSend returned: OK

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 36

150 Sending file ’example.fileone’

GetReplCodeText returns 150 150 Sending file ’example.fileone’

In UntilOpen: Note received:

=>TcpId 1 Connection state changed Trying to open

In UntilOpen: Note received:

 => TcpId 1 Connection state changed Open

Transferring in AsciiToRecord

In GetFromTcp, calling TcpWaitReceive with args: 1002BF000 32768

In GetFromTcp, TcpWaitReceive returned: 1072

GetFromTcp: 1072 bytes in buffer

In GetFromTcp, calling TcpWaitReceive with args: 1002BF000 32768

In GetFromTcp, TcpWaitReceive returned: -35

Sysclose called with fd = 3

In SysClose: Note received: => TcpId 1 Connection state changed Sending only

In SysClose: Note received: => TcpId 1 Connection state changed Connection

closing

Exiting from SysClose: fd = 3, TcpId = 1

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 37

250 Transfer completed successfully

GetReply returns 250

1072 bytes transferred. Transfer rate 2.17 Kbytes/sec.

Command:

===quit

>>>QUIT

In SysSendFlush, calling TcpWaitSend with args: 0 00034260 6

In SysSendFlush, TcpWaitSend returned: OK

In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535

In SysRead, TcpWaitReceive returned: 37

221 Quit command received. Goodbye

GetReply returns 221

Entering WaitAndClose

In WaitAndClose: Note received: => TcpId 1 Connection state changed

 Nonexistent

In WaitAndClose: Note received: => TcpId 0 Connection state changed

Sending only

Figure 76. A Sample of an FTP Client Trace (Part 2 of 2)

File Transfer Protocol Traces

Chapter 9. FTP Traces 137

0 Local host number.

65535 UNSPECIFIEDport, which is used to request an

available port from TCPIP with TcpOpen

functions.

2. Data is received from the remote server.

Trace Item Description

In SysRead Name of the FTP client procedure.

TcpWaitReceive Name of a TCPIP client procedure.

0 ID of the connection between the TCPIP and

FTP client.

00035BD4 Buffer address that contains the data or text to

be sent by the remote host.

65535 Buffer size authorized by the client.

131 Length of the data received, plus carriage

returns and line feeds (CR/LF) for:

v Outbound connections (preceding the text

line of output)

v Inbound connections (following the text line of

output); if this number is negative, it is a

return code.

3. SysSendFlush, an FTP client procedure, flushes buffered output and adds

CR/LFs.

Trace Item Description

TcpWaitSend Name of the TCP/IP function called.

0 Name of the control connection ID.

00034260 Buffer address of the data or command sent to

the remote host.

13 Length of the command sent plus CR/LF.

4. FTP performs a passive open to the remote host FTP server.

Trace Item Description

Fd=3 Internal connection slot number in the FTP

client program; the Fd for the first control

connection is 1.

TcpId Connection ID between the TCPIP and FTP

client.

9,67,58,226,4,72 Host address space, 9.67.58.226, and port

number, 1096. The port number is obtained by

converting 4 and 72 to hexadecimal (X'04' and

X'48'), and then converting X'0448' to a decimal.

5. The trace shows the evolving status of the data connection (TcpId 1) while in

routine UntilOpen. The purpose of the UntilOpen routine is to wait for the server

to complete the data connection after the open has been requested from TCPIP.

The status of the connection changes from:

TryingToOpen

to

File Transfer Protocol Traces

138 z/VM: TCP/IP Diagnosis Guide

Open.

6. A return code (-35) signifies that the remote host is closing the connection.

7. The status of the data connection being closed by TCPIP is displayed.

FTP Server Traces

The following sections describe how to activate FTP server traces and interpret the

output.

Activating Traces

Activation of the tracing facilities within the FTP server is accomplished at FTP

server initialization time by specifying the TRACE statement in the FTP server

configuration file (SRVRFTP CONFIG), or dynamically by using the FTP server

SMSG interface to issue an SMSG TRACE command. The following is the format

for the FTP server configuration file TRACE statement:

 The operands for the TRACE statement are:

Operands Description

CONSOLE Specifies that trace information should be directed

to the FTP server console.

FILE Specifies that trace information should be directed

to the FILE DEBUGTRA file on the FTP server 191

minidisk.

To enable or disable FTP server tracing interactively, use the FTP server SMSG

TRACE command. The following is the format of the FTP server SMSG TRACE

command:

 The operands for the SMSG TRACE command are:

Operands Description

��

TRACE
 CONSOLE

CONSOLE

FILE

��

Figure 77.

��

SMSG

server_id

TRace
 ON CONsole

CONsole

ON

FIle

OFF

��

Figure 78.

File Transfer Protocol Traces

Chapter 9. FTP Traces 139

server_id Specifies the user ID of the FTP server virtual

machine.

OFF Disables server tracing.

ON CONsole Enables server tracing and directs trace information

to the FTP server console.

ON FIle Enables server tracing and directs trace information

to the FILE DEBUGTRA file on the FTP server 191

minidisk. If the trace file already exists, its previous

contents are deleted.

Tracing on the FTP server provides the following types of information:

Console Output

Console output is standard for normal operations. The trace option adds

information about the general FTP server operations. For example, LINK

operations with return codes are provided. Console output is obtained in the

following format:

VM Standard console output.

Log The log gives information about abnormal run-time situations, such as

broken connections with TCP/IP or with the remote client and remote port

that is unavailable. The following describes how to obtain the log:

VM FTPSERVE LOG A file.

Debug File

The debug file provides complete information about internal FTP server

activities. When tracing is directed to the console, this information will be in

the FTP server console log and not in the debug file. The following

describes how to obtain the debug file:

VM FILE DEBUGTRA A file.

Trace Output

Tracing the internal operations of the FTP server provides information about the

processes, ports, and connections. The complete text of messages sent to clients,

operations, and the status of the data and control connections are also

documented.

Figure 79 shows a sample of an FTP Server Trace.

File Transfer Protocol Traces

140 z/VM: TCP/IP Diagnosis Guide

DTCFTS0359I Filemode ’A’ will be used for reader file support

DTCFTS7008I Server-FTP: CHKIPADRfound = TRUE

DTCFTS8507I AUDITexitINuse=FALSE, COMMANDexitINuse=FALSE, CDexitINuse=FALSE

DTCFTS0371I Default list format is UNIX

DTCFTS0373I Default automatic translation is turned ON

DTCFTS1248I z/VM Version 4 Release 3.0, service level 0000 (32-bit)

DTCFTS1248I CMS Level 19, Service Level 000

DTCFTS8099I SystemInitialize: Diagnose 88, class B check, DMSLINK rc=4 rsc=0

DTCFTS7003I Diagnose 88 authorization and Class B privilege confirmed

DTCFTS8112I In SystemInitialize, OpenVMF: Function code 3, Rval 0, rc 0, rsc 0.

DTCFTS2619I No VMFILETYPEDEFAULT statement in TCPIP DATA file

DTCFTS2620I No VMFILETYPE statement in TCPIP DATA file

DTCFTS4024I OpenConnection(00000000,21,00000000,65535,2147483647,FALSE

DTCFTS4013I AdvertizeService gets connection #0

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #0, Trying to open

DTCFTS4024I OpenConnection(00000000,21,00000000,65535,2147483647,FALSE

DTCFTS4013I AdvertizeService gets connection #1

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #0, Open

DTCFTS2502I Allocating buffer of 8192 bytes

DTCFTS4050I Send reply ’220-FTPSERVE IBM VM Level 430 at TCPIPDEV.ENDICOTT.IBM.COM, ...’

DTCFTS4050I Send reply ’220 Connection will close if idle for more than 5 minutes.’

DTCFTS4026I ReinitContConn(0)

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 15 bytes

DTCFTS2560I 15 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: USER TCPUSER1

DTCFTS8196I IP address checking returns 0.

DTCFTS2581I In VMIpAdrChk, list format changed to VM

DTCFTS2591I In VMIpAdrChk, automatic translation turned ON

DTCFTS4050I Send reply ’331 Send password please.’

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

Figure 79. A Sample of an FTP Server Trace (Part 1 of 4)

File Transfer Protocol Traces

Chapter 9. FTP Traces 141

DTCFTS0026I Got note Data delivered for #0, 11 bytes

DTCFTS2560I 11 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: PASS ftp4you

DTCFTS8096I CheckPassword: DMSPWCHK for User:’TCPUSER1’, ByUser:’’, rc=0

DTCFTS8060I LogData: ’Diag 0x88/0 Agent=(TCPUSER1,****) Target=TCPUSER1 RC=0’

DTCFTS8005I MinidiskLink(0) for TCPUSER1 191

DTCFTS8006I NewVirtual = 351

DTCFTS8001I DMSLINK rc=0 rsc=0 owner="TCPUSER1" agent="TCPUSER1".

DTCFTS8002I DMSLINK mdiskaddr="0191" vaddr="0351" Pass=" " ESMtoken=0.

DTCFTS8060I LogData: ’Diag 0x88/4 Agent=TCPUSER1 Target=(TCPUSER1.191,351,X,) RC=(0,0)’

DTCFTS8259I User TCPUSER1 working directory changed to TCPUSER1.191

DTCFTS8007I MinidiskLink Result = 0, VirtAddr = 351, Writable = TRUE

DTCFTS8008I Owner TCPUSER1, Addr 191, NewOwner TCPUSER1, NewAddr 191

DTCFTS4050I Send reply ’230 TCPUSER1 logged in; working directory = TCPUSER1 191’

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 26 bytes

DTCFTS2560I 26 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: PORT 9,117,222,18,70,189

DTCFTS4050I Send reply ’200 Port request OK.’

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 6 bytes

DTCFTS2560I 6 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: LIST

DTCFTS8124I In FindMode, "CMS ACCESS 351 B", rc 0.

DTCFTS8094I FindMode minidisk TCPUSER1.191 accessed as 351 B

DTCFTS8125I In DoSFSMinidiskList, "CMS LISTFILE * * B (EXEC LABEL NOHEADER ALLFILE", rc 0.

DTCFTS4024I OpenConnection(0982F92E,20,0975DE12,18109,30,TRUE

DTCFTS4050I Send reply ’125 List started OK’

DTCFTS8014I DoList: Sopenfscb of clean file

DTCFTS7009I SOpenfscb: name is: CONN-2.FTPLIST.A

DTCFTS7010I SOpenFscb: ESTATE returns: 0

DTCFTS6005I SOpenFscb: recfm: V lrecl: 79

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Open

DTCFTS2502I Allocating buffer of 131072 bytes

DTCFTS2503I Allocating RdFromDiskBuf of 8192 bytes

DTCFTS2508I Data connection 2 open for sending

DTCFTS4052I ReinitDataConn(2)

DTCFTS4053I FtpFormat: A FtpMode: S FtpOptFormat: 0

DTCFTS4054I RecordFormat: V RecordLength: 65535

DTCFTS4058I AutomaticTranslation: ON

DTCFTS4027I StartTransfer for 2:

DTCFTS4031I Xfread: totalread = 8190 Result = 0 FByte = 1 LByte = 0

DTCFTS4028I 8190 bytes sent on connection 2

DTCFTS8603I ---

Figure 79. A Sample of an FTP Server Trace (Part 2 of 4)

File Transfer Protocol Traces

142 z/VM: TCP/IP Diagnosis Guide

DTCFTS0028I Got note FSend response for #2, SendTurnCode = 0

DTCFTS4031I Xfread: totalread = 1692 Result = 0 FByte = 8191 LByte = 8190

DTCFTS4028I 1692 bytes sent on connection 2

DTCFTS8603I ---

DTCFTS0028I Got note FSend response for #2, SendTurnCode = 0

DTCFTS4031I Xfread: totalread = 0 Result = -12 FByte = 1693 LByte = 1692

DTCFTS7013I Calling CMS(ERASE CONN-2 FTPLIST A)

DTCFTS7012E TidyFile: FINIS returns 6

DTCFTS4017I Closing connection #2

DTCFTS4019I Completed CloseConnection

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Receiving only

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Nonexistent

DTCFTS2511I CloseCompleted on #2: OK

DTCFTS7013I Calling CMS(ERASE CONN-2 FTPLIST A)

DTCFTS4050I Send reply ’250 List completed successfully.’

DTCFTS4056I DataReply: Setting CmdInProgress to CUNKNOWN on conn #2, was LIST

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 26 bytes

DTCFTS2560I 26 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: PORT 9,117,222,18,70,202

DTCFTS4050I Send reply ’200 Port request OK.’

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 17 bytes

DTCFTS2560I 17 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: RETR TEST1.DATA

DTCFTS8095I FindMode minidisk TCPUSER1.191 re-accessed as 351 B

DTCFTS4024I OpenConnection(0982F92E,20,0975DE12,18122,30,TRUE

DTCFTS4052I ReinitDataConn(2)

DTCFTS4053I FtpFormat: A FtpMode: S FtpOptFormat: 0

DTCFTS4054I RecordFormat: V RecordLength: 65535

DTCFTS4058I AutomaticTranslation: ON

DTCFTS7009I SOpenfscb: name is: TEST1.DATA.B

DTCFTS7010I SOpenFscb: ESTATE returns: 0

DTCFTS6005I SOpenFscb: recfm: F lrecl: 80

DTCFTS4050I Send reply ’150 Sending file ’TEST1.DATA’ FIXrecfm 80’

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

Figure 79. A Sample of an FTP Server Trace (Part 3 of 4)

File Transfer Protocol Traces

Chapter 9. FTP Traces 143

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Open

DTCFTS2502I Allocating buffer of 131072 bytes

DTCFTS2503I Allocating RdFromDiskBuf of 8192 bytes

DTCFTS2508I Data connection 2 open for sending

DTCFTS4052I ReinitDataConn(2)

DTCFTS4053I FtpFormat: A FtpMode: S FtpOptFormat: 0

DTCFTS4054I RecordFormat: V RecordLength: 65535

DTCFTS4058I AutomaticTranslation: ON

DTCFTS4027I StartTransfer for 2:

DTCFTS4031I Xfread: totalread = 656 Result = 0 FByte = 1 LByte = 0

DTCFTS4028I 656 bytes sent on connection 2

DTCFTS8603I ---

DTCFTS0028I Got note FSend response for #2, SendTurnCode = 0

DTCFTS4031I Xfread: totalread = 0 Result = -12 FByte = 657 LByte = 656

DTCFTS7012E TidyFile: FINIS returns 0

DTCFTS4017I Closing connection #2

DTCFTS4019I Completed CloseConnection

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Receiving only

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #2, Nonexistent

DTCFTS2511I CloseCompleted on #2: OK

DTCFTS4050I Send reply ’250 Transfer completed successfully.’

DTCFTS4056I DataReply: Setting CmdInProgress to CUNKNOWN on conn #2, was RETR

DTCFTS8603I ---

DTCFTS0026I Got note Data delivered for #0, 6 bytes

DTCFTS2560I 6 bytes arrived on conn #0

DTCFTS7022I Command Received on conn #0: QUIT

DTCFTS4050I Send reply ’221 Quit command received. Goodbye.’

DTCFTS4017I Closing connection #0

DTCFTS4019I Completed CloseConnection

DTCFTS4020I GetData(0)

DTCFTS4022I In GetData, TcpFReceive: Where = 1

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #0, Receiving only

DTCFTS8603I ---

DTCFTS0023I Got note Connection state changed for #0, Nonexistent

DTCFTS2511I CloseCompleted on #0: OK

DTCFTS8184I FreeMode B.

Figure 79. A Sample of an FTP Server Trace (Part 4 of 4)

144 z/VM: TCP/IP Diagnosis Guide

Chapter 10. IMAP Server Diagnosis

This chapter describes some of the debugging facilities for the IMAP server. It

begins with a diagram to show the basic flow of mail as it arrives at the IMAP

server and is viewed by IMAP clients. The chapter then discusses the trace facilities

that are available for the IMAP server and shows examples for each type. The final

section of this chapter lists some common problems you may encounter and what

actions you should take to address these problems.

IMAP Mail Flow

The following diagram illustrates how the IMAP server handles mail arriving at the

SMTP server:

�1�

Mail arrives at the SMTP server (local mail arrives in BSMTP format in the SMTP

reader, outside mail arrives across the wire on the well-known SMTP port (25).

�2�

The SMTP server delivers all mail that is destined for a local user to the IMAP

server (this is accomplished via the SMTPCMDS exit which constructs a NETDATA

spool file and punches it over to the IMAP reader).

�3�

IMAP Administrator
Virtual Machine

(IMAPADM EXEC)

IMAP Server
Virtual Machine

Mailstore
SFS Server

Virtual Machine

File Pool containing IMAP Mailstore

SFS SFS SFS

IMAP
Client

IMAP
Client

IMAP
Client

SMTP Server
Virtual Machine

Incoming Mail

Local Spool TCP Wire

RDR Port 25

RDR

CMS Queue

Port 143

4

2

1 3

5

Figure 80. IMAP Client and Server Environment

© Copyright IBM Corp. 1987, 2005 145

IMAP clients connect to the IMAP server on the well-known IMAP port (143) and

access their mail using the IMAP protocol.

�4�

The IMAP server utilizes asynchronous SFS utilities to interface with the mailstore

(store and retrieve mail, create and delete folders, etc.).

�5�

Authorized administrators use the IMAPADM EXEC to issue administrative

commands to the IMAP server. The commands are sent across a CMS queue. The

IMAP server receives the command, processes it, and then replies back across the

queue to the administrator.

Invoking Trace Activity on the IMAP Server

The type of activity that can be traced on the IMAP Server consists of the following:

v TRACE CODEFLOW

v TRACE SOCKLIBCALLS

v TRACE SOCKETIO

Refer to the IMAPADM TRACE statement in the TCP/IP Planning and

Customization for information on starting and stopping trace procedures.

Trace Output

The following trace examples show output received from an IMAP server when

tracing CODEFLOW, SOCKLIBCALLS, and SOCKETIO.

Trace CODEFLOW

CODEFLOW tracing displays a trace entry upon entering and leaving all routines in

the IMAP server module.

Administrative Console

imapadm imap trace codeflow

CODEFLOW tracing turned on as requested

Ready; T=0.01/0.01 10:38:04

IMAP Server Console

10:38:04 DTCIMP1026I Admin request from user HUST : trace codeflow on

10:38:04 CODEFLOW tracing turned on by admin command

10:38:04 ???????? Leaving AdminTrace

10:38:16 ???????? Leaving AdminCP

10:38:53 01D70210 Leaving RecvBuf, 40 bytes received

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken 9

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken UID

10:38:53 ???????? Entering UpperCase

10:38:53 ???????? Leaving UpperCase

10:38:53 01D70210 Entering CommandHandle

10:38:53 ???????? Entering AcquireCmdLock for JHUST

10:38:53 ???????? Leaving AcquireCmdLock for JHUST token 475187

10:38:53 01D70210 Entering UID

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken fetch

10:38:53 ???????? Entering UpperCase

IMAP Diagnosis

146 z/VM: TCP/IP Diagnosis Guide

10:38:53 ???????? Leaving UpperCase

10:38:53 01D70210 Entering Fetch

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken 2

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken UID RFC822.SIZE BODY141;217;

10:38:53 01D70210 Entering CmdToken

10:38:53 01D70210 Leaving CmdToken (end of tokens)

10:38:53 01D70210 Entering AlertandUpdateCheck

10:38:53 01D70210 Leaving AlertandUpdateCheck

10:38:53 ???????? Entering UpperCase

10:38:53 ???????? Leaving UpperCase

10:38:53 01D70210 Entering MemAlloc, 20

10:38:53 01D70210 Leaving MemAlloc

10:38:53 ???????? Entering DoMsgList

10:38:53 ???????? Leaving DoMsgList valid

10:38:53 01D70210 Entering FetchNote

10:38:53 01D70210 Entering BufAdd (* 2 FETCH ()

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 11 bytes

10:38:53 01D70210 Entering MemAlloc, 23

10:38:53 01D70210 Leaving MemAlloc

10:38:53 ???????? Entering FetchUID

10:38:53 01D70210 Entering BufAdd (UID 2)

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 5 bytes

10:38:53 ???????? Leaving FetchUID, returning TRUE

10:38:53 01D70210 Entering BufAdd ()

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 1 bytes

10:38:53 ???????? Entering FetchRFC822Size

10:38:53 01D70210 Entering BufAdd (RFC822.SIZE 480)

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 15 bytes

10:38:53 ???????? Leaving FetchRFC822Size, returning TRUE

10:38:53 01D70210 Entering BufAdd ()

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 1 bytes

10:38:53 01D70210 Entering BufAdd (BODY141;217; {480}

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 14 bytes

10:38:53 01D70210 Entering BufAddDataBlock, 1-480

10:38:53 ???????? Entering SFSOpenFile for 2 NOTE JHUST.INBOX

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSOpenFile for 2 NOTE JHUST.INBOX 0 object

 token 000054f800000011

10:38:53 ???????? Entering SFSReadFile, object token 000054f800000011 1

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSReadFile, object token 000054f800000011 0

10:38:53 ???????? Entering SFSCloseFile, object token 000054f800000011

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSCloseFile, object token 000054f800000011 0

10:38:53 01D70210 Leaving BufAddDataBlock, returning TRUE, added 480 bytes

10:38:53 01D70210 Entering WriteToNoteIndexFile

10:38:53 ???????? Entering SFSOpenFile for NOTE INDEX JHUST.INBOX

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSOpenFile for NOTE INDEX JHUST.INBOX 0 object

 token 000054f800000012

10:38:53 ???????? Entering SFSWriteFile, object token 000054f800000012 2

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSWriteFile, object token 000054f800000012 0

10:38:53 ???????? Entering SFSCloseFile, object token 000054f800000012

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSCloseFile, object token 000054f800000012 0

10:38:53 01D70210 Leaving WriteToNoteIndexFile, rs = 0

10:38:53 01D70210 Entering MailboxIndexEntryHarden for JHUST.INBOX

10:38:53 ???????? Entering SFSOpenFile for MAILBOX INDEX JHUST.

IMAP Diagnosis

Chapter 10. IMAP Server Diagnosis 147

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSOpenFile for MAILBOX INDEX JHUST. 0 object

 token 000054f800000013

10:38:53 ???????? Entering SFSReadFile, object token 000054f800000013 1

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSReadFile, object token 000054f800000013 0

10:38:53 ???????? Entering SFSWriteFile, object token 000054f800000013 1

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSWriteFile, object token 000054f800000013 0

10:38:53 ???????? Entering SFSCloseFile, object token 000054f800000013

10:38:53 ???????? Entering AsyncWait, event token 131077

10:38:53 ???????? Leaving AsyncWait, event token 131077

10:38:53 ???????? Leaving SFSCloseFile, object token 000054f800000013 0

10:38:53 01D70210 Leaving MailboxIndexEntryHarden for JHUST.INBOX rc 0

10:38:53 01D70210 Entering BufAdd ()

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 1 bytes

10:38:53 ???????? Entering FetchFlags

10:38:53 ???????? Entering NoteFlagsToString

10:38:53 ???????? Leaving NoteFlagsToString, flagstr = \Seen \Recent

10:38:53 01D70210 Entering BufAdd (FLAGS (\Seen \Recent))

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 21 bytes

10:38:53 ???????? Leaving FetchFlags, returning TRUE

10:38:53 01D70210 Entering BufAdd ())

10:38:53 01D70210 Leaving BufAdd, returning TRUE, added 1 bytes

10:38:53 01D70210 Entering SendBuf

10:38:53 01D70210 Leaving SendBuf, 552 bytes sent

10:38:53 01D70210 Leaving FetchNote, returning TRUE

10:38:53 ???????? Entering SFSCommitWork, work unit 13

10:38:53 ???????? Leaving SFSCommitWork, work unit 13 0

10:38:53 01D70210 Entering SendBuf

10:38:53 01D70210 Leaving SendBuf, 26 bytes sent

10:38:53 01D70210 Leaving Fetch

10:38:53 01D70210 Leaving UID

10:38:53 ???????? Entering ReleaseCmdLock token 475187

10:38:53 ???????? Leaving ReleaseCmdLock token 475187

10:38:53 01D70210 Leaving CommandHandle

10:38:53 01D70210 Entering RecvBuf

Trace SOCKLIBCALLS

SOCKLIBCALLS tracing displays a trace entry every time a socket library routine is

called by the IMAP server.

Administrative Console

Ready; T=0.01/0.01 11:10:52

imapadm imap trace socklibcalls on

SOCKLIBCALLS tracing turned on as requested

Ready; T=0.01/0.01 11:11:04

imapadm imap trace socklibcalls off

SOCKLIBCALLS tracing turned off as requested

Ready; T=0.01/0.01 11:12:08

IMAP Server Console

11:11:04 DTCIMP1026I Admin request from user HUST : trace socklibcalls on

11:11:04 SOCKLIBCALLS tracing turned on by admin command

11:11:12 01AC9210 PS_async_read (comp) 31 0 1 4

11:11:12 01AC9210 PS_write 165 0 1

11:11:12 01AC9210 PS_write 26 0 1

11:11:12 01AC9210 PS_async_read (init) 0 0 1 5

11:11:12 01AC9210 PS_async_read (comp) 48 0 1 5

11:11:12 01AC9210 PS_write 6222 0 1

11:11:12 01AC9210 PS_write 26 0 1

11:11:12 01AC9210 PS_async_read (init) 0 0 1 6

IMAP Diagnosis

148 z/VM: TCP/IP Diagnosis Guide

11:11:12 01AC9210 PS_async_read (comp) 51 0 1 6

11:11:12 01AC9210 PS_write 6203 0 1

11:11:12 01AC9210 PS_write 26 0 1

11:11:12 01AC9210 PS_async_read (init) 0 0 1 7

11:11:12 01AC9210 PS_async_read (comp) 52 0 1 7

11:11:13 01AC9210 PS_write 8252 0 1

11:11:13 01AC9210 PS_write 26 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 8

11:11:26 01AC9210 PS_async_read (comp) 53 0 1 8

11:11:26 01AC9210 PS_write 10301 0 1

11:11:26 01AC9210 PS_write 26 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 9

11:11:26 01AC9210 PS_async_read (comp) 53 0 1 9

11:11:26 01AC9210 PS_write 12349 0 1

11:11:26 01AC9210 PS_write 26 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 10

11:11:26 01AC9210 PS_async_read (comp) 54 0 1 10

11:11:26 01AC9210 PS_write 14397 0 1

11:11:26 01AC9210 PS_write 27 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 11

11:11:26 01AC9210 PS_async_read (comp) 54 0 1 11

11:11:26 01AC9210 PS_write 16445 0 1

11:11:26 01AC9210 PS_write 27 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 12

11:11:26 01AC9210 PS_async_read (comp) 52 0 1 12

11:11:26 01AC9210 PS_write 647 0 1

11:11:26 01AC9210 PS_write 27 0 1

11:11:26 01AC9210 PS_async_read (init) 0 0 1 13

11:12:08 DTCIMP1026I Admin request from user HUST : trace socklibcalls off

11:12:08 SOCKLIBCALLS tracing turned off by admin command

Trace SOCKETIO

SOCKETIO tracing displays a trace entry for every data transaction that occurs at

the IMAP server (data sent or received over a socket).

Administrative Console

Ready; T=0.01/0.01 11:20:37

imapadm imap trace socketio on

SOCKETIO tracing turned on for all IP addresses as requested

Ready; T=0.01/0.01 11:20:50

imapadm imap trace socketio off

SOCKETIO tracing turned off for all IP addresses as requested

Ready; T=0.01/0.01 11:22:28

IMAP Server Console

11:20:50 DTCIMP1026I Admin request from user HUST : trace socketio on

11:20:50 SOCKETIO tracing turned on for all IP addresses by admin command

11:21:12 DTCIMP1027I 9.130.58.43 Connected

11:21:12 01AC9210 SendBuf->* OK CAPABILITY IMAP4Rev1 z/VM IMAP server ready

11:21:12 01AC9210 RecvBuf->1 login "smith" "abc"

11:21:12 01AC9210 SendBuf->1 OK LOGIN completed

11:21:12 DTCIMP1028I 9.130.58.43 Authenticated as user smith

11:21:12 01AC9210 RecvBuf->2 select "INBOX"

11:21:12 01AC9210 SendBuf->* 5 EXISTS

11:21:12

* 5 RECENT

11:21:12

* OK 141;UNSEEN 1217; Message 1 is first unseen

11:21:12

* OK 141;UIDVALIDITY 199038001217;

11:21:12

* OK 141;UIDNEXT 6217; Predicted next UID

11:21:12

IMAP Diagnosis

Chapter 10. IMAP Server Diagnosis 149

* FLAGS (\Unmarked)

11:21:12

* OK 141;PERMANENTFLAGS (\Seen \Answered \Flagged \Deleted \Draft)217;

11:21:12

2 OK 141;READ-WRITE217; SELECT completed

11:21:12 01AC9210 RecvBuf->3 UID fetch 1:* (FLAGS)

11:21:27 01AC9210 SendBuf->* 1 FETCH (FLAGS (\Recent) UID 1)

11:21:27 01AC9210 SendBuf->* 2 FETCH (FLAGS (\Seen \Recent) UID 2)

11:21:27 01AC9210 SendBuf->* 3 FETCH (FLAGS (\Seen \Recent) UID 3)

11:21:27 01AC9210 SendBuf->* 4 FETCH (FLAGS (\Recent) UID 4)

11:21:27 01AC9210 SendBuf->* 5 FETCH (FLAGS (\Seen \Recent) UID 5)

11:21:27 01AC9210 SendBuf->3 OK UID FETCH completed

11:21:49 01AC9210 RecvBuf->4 uid store 3 +FLAGS (\Deleted)

11:21:49 01AC9210 SendBuf->* 3 FETCH (FLAGS (\Seen \Deleted \Recent))

11:21:49 01AC9210 SendBuf->4 OK UID STORE completed

11:22:28 DTCIMP1026I Admin request from user HUST : trace socketio off

11:22:28 SOCKETIO tracing turned off for all IP addresses by admin command

Diagnosing Problems

The following provides information about problems that you might encounter with

the IMAP server and suggestions for diagnosing the problem.

Problem - IMAP server fails during initialization with the following

message: DTCIMP5008E Error on socket call: PS_bind rc=13

Cause

The server is attempting to bind the socket that is to be used for listening for clients

to the port that has been specified in the IMAP configuration file (or the default port

number, port 143). The call to ps_bind has failed with a return code 13 (EACCES -

permission denied).

Action

This is the first attempt by the IMAP server to utilize TCP/IP services, and the

EACCES error usually indicates that the IMAP server user ID has not been

authorized to use the port on which it wishes to listen. If IMAP listens on a

well-known port, this problem might be due to the default setting on the

ASSORTEDPARMS statement. For z/VM Version 4, Release 4.0 and later releases,

the default on the ASSORTEDPARMS statement is RESTRICTLOWPORTS, which

restricts the use of well-known ports (1 through 1023) to users who are specified on

the OBEY statement, or users that have a port explicitly reserved for them with a

PORT statement. You can free up the use of the well-known ports by specifying

FREELOWPORTS in the TCP/IP configuration file, or you can specify a PORT

statement reserving the specific port for the IMAP server.

Problem - Error 32 on socket call PS_write when a client disconnects

Cause

Results from the client closing the connection immediately after sending the

LOGOUT command without waiting for the server’s response, or the client closes

the connection without sending a LOGOUT.

Action

Usually return codes from PS_routines are standard socket errno’s; take the action

appropriate for the errno.

IMAP Diagnosis

150 z/VM: TCP/IP Diagnosis Guide

Problem - Administrator command times out and Error QueueReplying

to a request: rc=8, rs=207 is displayed on the server’s console when

the command completes

Cause

The administrator interface exec (IMAPADM EXEC) specifies a timeout value of 9

seconds. If the request has not completed in this amount of time the exec times out

the request.

Action

To avoid the messages, increase the timeout value, or set it to zero to wait forever.

Problem - Clients attempt to connect to the IMAP server, and the

server never responds

Cause

The following items can cause this problem:

v The server is listening on the wrong port number.

v An incorrect TCP/IP machine is specified on the TCPIPUSERID statement.

Action

1. Verify that the server is listening on the correct port number and is using the

correct TCP/IP machine.

2. Verify that the TCP/IP DATA file used by the IMAP server has the correct

TCP/IP machine specified on the TCPIPUSERID statement.

Problem - Error connecting to *SPL

Cause

An IUCV *SPL statement is missing from the server’s directory entry.

Action

v Verify that the TCP/IP server has an IUCV *SPL statement in it’s directory entry.

Problem - Error rc=8 rs=11 on PS_applinit call

Cause

This error occurs if the server cannot connect to the TCP/IP machine.

Action

1. Verify that the TCP/IP machine (the stack) is started.

2. Verify that the TCP/IP DATA file that is being used by the IMAP server has

specified the correct TCP/IP machine on the TCPIPUSERID statement.

3. Check the messages from the TCP/IP server console for indications of

problems. Refer to the TCP/IP Messages and Codes and follow the directions

for the system programmer response for the particular message.

Problem - The IMAP server could not be started

Documentation

The following documentation should be available for initial diagnosis:

v TCPIP DATA information

v Messages from the IMAP server console

IMAP Diagnosis

Chapter 10. IMAP Server Diagnosis 151

v DTCPARMS information

Action

If the server can not be started:

v Check the messages from the IMAP server console for indications of problems.

Refer to theTCP/IP Messages and Codes and follow the directions for the system

programmer response for the particular message.

Problem - The IMAP server is restarted by the stack at regular

intervals

The most common cause of this condition is that the server is in the AUTOLOG list

and also has a PORT statement reserving a TCP port but does not have a listening

connection.

Documentation

The following documentation should be available for initial diagnosis:

v PROFILE TCPIP

v ETC SERVICES

v IMAP trace output from the TCP/IP server

Action

v Trace the IMAP process in the TCP/IP server to determine if there were errors on

socket calls from the IMAP server.

Reason Codes for Mail Sent to BADFILEID

When the IMAP server cannot deliver a piece of mail, the spool file associated with

the mail is tagged with a reason code and transferred to the user ID specified in the

BADFILEID configuration file statement. The reason code associated with an IMAP

spool file can be identified by querying the TAG data associated with the spool file.

The reason code and the userid of the IMAP server are placed in the tag

information in much the same way as SMTP stores origin information for mail

coming in from the TCP/IP network that is destined for local users. The format of

this tag data follows, where xx is the spool file reason code and nnnnnnnn is the

IMAP server user ID:

FILE (SMTP) ORIGIN ERR=xx nnnnnnnn

The following reason codes describe why the spool file could not be delivered by

the IMAP server. For each reason code, the associated error messages that are

displayed on the IMAP server console are given. Refer to the TCP/IP Messages

and Codes for more information on the given error messages.

 Table 15. Reason Codes for Mail Sent to BADFILEID

Reason

Code

Error Message(s) Explanation

1 DTCIMP1033 The IMAP server encountered an error while

attempting to read the spool file using the *SPL

system service.

2 DTCIMP1062 The spool file originated from a user ID that is not

authorized to send mail to the IMAP server.

Incoming mail must originate from a user ID listed

in the MAILORIGINID configuration file statement.

IMAP Diagnosis

152 z/VM: TCP/IP Diagnosis Guide

Table 15. Reason Codes for Mail Sent to BADFILEID (continued)

Reason

Code

Error Message(s) Explanation

3 DTCIMP1063 The spool file was not created on a virtual punch

device. The IMAP server only supports spool files

created on a virtual punch device.

4 DTCIMP1057 The recipient user ID of the spool file is larger than

the maximum user ID allowed by RFC821.

5 DTCIMP1053 The spool file data did not contain all of its card

images. The spool file may be corrupted.

6 DTCIMP1054 The spool file contains a NETDATA record which

has a segment size less than one. The spool file

may be corrupted.

7 DTCIMP1055 The spool file contains a NETDATA record which

has an unrecognized segment flag. The spool file

may be corrupted.

8 DTCIMP1056 The spool file contains a NETDATA control record

that does not begin with an INMR0 string. The

spool file may be corrupted.

9 DTCIMP1051 The spool file contains an unrecognized Channel

Command Word (CCW) flag or Transfer in Channel

(TIC) command. The spool file may be corrupted.

10 DTCIMP1052 The spool file contains a card image that is larger

than the receiving buffer. The spool file may be

corrupted.

11 N/A The spool file does not have a message header.

12 N/A The spool file contains a header field that is greater

than 100 characters in length. Header fields must

be less than or equal to 100 characters in length.

13 N/A The spool file contains a line in the header section

which is missing a header field (there is no colon in

the line).

14 N/A The header section of the spool file does not end

with a null line.

15 DTCIMP1021 The IMAP server was unable to allocate virtual

storage while processing the spool file.

16 DTCIMP1001 An error occurred while trying to open the new note

file associated with the spool file.

17 DTCIMP1001 The IMAP server could not open a new note file

associated with the spool file because the note file

already exists.

18 DTCIMP1001 The IMAP server could not open the note file

associated with the spool file because write

authority was denied to the recipient’s INBOX

directory.

19 DTCIMP1004 An error occurred while trying to write to the note

file associated with the spool file.

20 DTCIMP1002 An error occurred while trying to close the new

note file associated with the spool file.

IMAP Diagnosis

Chapter 10. IMAP Server Diagnosis 153

Table 15. Reason Codes for Mail Sent to BADFILEID (continued)

Reason

Code

Error Message(s) Explanation

21 DTCIMP1001

DTCIMP1004

An error occurred while trying to open or write to

the note index file associated with the recipient’s

INBOX directory.

22 DTCIMP1001 An error occurred while trying to open the part

index file associated with the spool file.

23 DTCIMP1004 An error occurred while trying to write to the part

index file associated with the spool file.

24 DTCIMP1002 An error occurred while trying to close the part

index file associated with the spool file.

25 DTCIMP1001

DTCIMP1002

DTCIMP1003

DTCIMP1004

DTCIMP1022

An error occurred while trying to write the changes

associated with the new note to the recipient’s

MAILBOX INDEX file.

26 N/A An error occurred while trying to commit the

changes associated with the new note file. The

destination user is most likely out of space in the

IMAP SFS filepool.

27 N/A The recipient user ID of the spool file was the

IMAP server. Since this would result in a transfer

loop, the file is transferred to the BADFILEID.

28 DTCIMP1031 An error occurred while trying to transfer the spool

file to the recipient user ID. The recipient user ID

may not exist or the user may have reached their

spool file limit.

29 N/A An error occurred trying to parse the header

section of a note due to either a CONTENT-TYPE

header or a CONTENT-TRANSFER-ENCODING

header that exceeded 1024 characters.

30 DTCIMP1084

DTCIMP1088

An authentication exit is in use and we called it to

map the user ID, but either it rejected the request

to map the user ID or the request timed out.

31 DTCIMP1064 While reading a spool file, an unsupported CCW

was encountered.

IMAP Diagnosis

154 z/VM: TCP/IP Diagnosis Guide

Chapter 11. Simple Mail Transfer Protocol Traces

This chapter describes how to activate and interpret Simple Mail Transfer Protocol

(SMTP) traces.

SMTP Client Traces

The client interface to SMTP is in the form of some type of electronic mailing

handling program. There is no formal command interface. The mailing programs

(procedures) communicate with the IBM TCP/IP implementation of SMTP. The client

programming interfaces that are available for use with the TCP/IP Feature for z/VM

are the CMS SENDFILE and NOTE commands.

Activating Traces

Trace activation in the client environment is dependent on the type of mail handling

facilities made available at an installation. The client interfaces provided with the

TCP/IP product are in the form of a REXX EXEC procedures for VM.

The NOTE and SENDFILE EXEC procedures are written in the REXX procedures

language, so various levels of traces are available for use. Refer to the applicable

level of the System Product Interpreter Reference publication for more information.

The results of any chosen trace level will be directed to the user’s console.

Obtaining Queue Information

Clients can obtain information about mail that SMTP is delivering or waiting to

deliver. While this facility is not considered to be a formal diagnostic aid, it can be

used in situations where it is felt that an inordinate delay in mail delivery is

occurring to determine if further investigation is warranted.

The SMTPQUEU command is used to obtain the queue information. It causes the

SMTP virtual machine to deliver a piece of mail that lists the mail queued for

delivery at each site. The mail is spooled to the user that issued the SMPTQUEU

command. Figure 81 on page 156 shows the format of the output returned by the

SMTP server.

© Copyright IBM Corp. 1987, 2005 155

SMTP Server Traces

The following sections describe how to activate and interpret SMTP server traces.

In order to help with interpreting trace output, a list of the SMTP commands that

can appear in the trace data along with descriptions of these commands is supplied

below. The SMTP server provides the interface between the internet and IBM host

systems. For more information about the SMTP protocol, see RFC 821.

Activating Traces

SMTP server traces can be activated by including a TRACE statement in the SMTP

CONFIG file, or by using the SMSG interface to the SMTP machine to issue an

SMSG TRACE command. For information on the syntax of the TRACE statement or

the SMSG TRACE command as well as information on what types of traces are

available, refer to the SMTP chapter in the VM TCP/IP Planning and Customization

manual. Sample trace data for several of the available trace commands is provided

at the end of this chapter.

SMTP Commands

SMTP commands define the mail transfer or the mail system function requested by

the user. The commands are character strings terminated by the carriage return and

line feed characters (CR/LF). The SMTP command codes are alphabetic characters.

These characters are separated by a space if parameters follow the command or a

CR/LF if there are no parameters.

Table 16 on page 157 describes the SMTP commands that are helpful when

interpreting SMTP trace output.

220-ENDVMM.ENDICOTT.IBM.COM running IBM VM SMTP

Level nnn on Fri, 26 Jul 97 09:55:05 E

220 DT

050 VERB ON

250 Verbose Mode On

050 QUEU

250-Queues on ENDVMM.ENDICOTT.IBM.COM at 09:55:05 EDT on 07/26/97

250-Spool Queue: Empty

250-Undeliverable Queue: Empty

250-Resolution Queues:

250-Resolver Process Queue: Empty

250-Resolver Send Queue: Empty

250-Resolver Wait Queue: Empty

250-Resolver Retry Queue: Empty

250-Resolver Completed Queue: Empty

250-Resolver Error Pending Queue: Empty

250 OK

Figure 81. Sample Outout form a Mail Queue Query

SMTP Traces

156 z/VM: TCP/IP Diagnosis Guide

Table 16. SMTP Commands

Name Command Description

DATA DATA The receiver treats the lines following the DATA

command as mail data from the sender. This

command causes the mail data that is transferred to

be appended to the mail data buffer. The mail data

can contain any of the 128 ASCII character codes.

The mail data is terminated by a line containing only a

period, that is the character sequence CR/LF CR/LF.

EXTENDED

HELLO

EHLO This command identifies the SMTP client to the SMTP

server and asks the server to send a reply stating

which SMTP Service Extensions the server supports.

The argument field contains the host name of the

client.

EXPAND EXPN This command asks the receiver to confirm that the

argument identifies a mailing list and, if so, to return

the membership of that list. The full name of the

users, if known, and the fully specified mailboxes are

returned in a multiline reply.

HELLO HELO This command identifies the sender-SMTP to the

receiver-SMTP. The argument field contains the host

name of the sender-SMTP.

HELP HELP This command causes the receiver to send

information to the sender of the HELP command. The

command returns specific information about any

command listed as a HELP argument.

MAIL MAIL This command initiates a mail transaction for mail

data that is delivered to one or more mailboxes. The

required argument field contains a reverse path. If the

EHLO command was specified, the optional SIZE field

may be used to indicate the size of the mail in bytes,

and the optional BODY field may be used to specify

whether a 7-bit message or an 8-bit MIME message

is being sent.

NOOP NOOP This command requests an OK reply from the

receiver. It does not affect any parameters or

previously entered commands.

QUIT QUIT This command requests an OK reply from the

receiver, and then it closes the transmission channel.

RECIPIENT RCPT This command identifies an individual recipient of the

mail data; multiple recipients are specified by multiple

RCPT commands.

RESET RSET This command aborts the current mail transaction.

Any stored sender, recipient, or mail data is

discarded, and all buffers and state tables are

cleared. The receiver sends an OK reply.

VERIFY VRFY This command asks the receiver to confirm that the

argument identifies a user. If it is a user name, the full

name of the user, if known, and the fully specified

mailbox are returned.

Figure 82 on page 158 shows the SMTP reply codes. The information shown in this

figure is from RFC 821, and RFC 1869.

SMTP Traces

Chapter 11. Simple Mail Transfer Protocol Traces 157

Sample Debug Trace

The following describes how the output from an SMTP server trace using TRACE

DEBUG is organized:

Conn_number

This is the TCP connection number. A value of 257 identifies a server

working in batch mode. This often occurs when a server is reading a file

that it has received from a local user before sending the file to the remote

host.

In/Out_char

This character indicates the way the message or command is traveling. A >

symbol indicates an outgoing message or command and a < symbol

indicates an incoming message or command.

 RFC’s 821 and 1869

 Simple Mail Transfer Protocol

 4.2.1. REPLY CODES BY FUNCTION GROUPS

 500 Syntax error, command unrecognized

 {This may include errors such as command line too long}

 501 Syntax error in parameters or arguments

 502 Command not implemented

 503 Bad sequence of commands

 504 Command parameter not implemented

 211 System status, or system help reply

 214 Help message

 {Information on how to use the receiver or the meaning of a

 particular non-standard command; this reply is useful only

 to the human user}

 220 <domain> Service ready

 221 <domain> Service closing transmission channel

 421 <domain> Service not available,

 closing transmission channel

 {This may be a reply to any command if the service knows it

 must shut down}

 250 Requested mail action okay, completed

 251 User not local; will forward to <forward-path>

 450 Requested mail action not taken: mailbox unavailable

 {E.g., mailbox busy}

 550 Requested action not taken: mailbox unavailable

 {E.g., mailbox not found, no access}

 451 Requested action aborted: error in processing

 551 User not local; please try <forward-path>

 452 Requested action not taken: insufficient system storage

 552 Requested mail action aborted: exceeded storage allocation

 553 Requested action not taken: mailbox name not allowed

 {E.g., mailbox syntax incorrect}

 354 Start mail input; end with <CRLF>.<CRLF>

 554 Transaction failed

 555 Requested action not taken:

 parameters associated with a MAIL FROM

 or RCPT TO command are not recgnized

 Postel {Page 35}

Figure 82. SMTP Reply Codes. From RFC 821, and RFC 1869

SMTP Traces

158 z/VM: TCP/IP Diagnosis Guide

Cmd_line

This is the information exchanged between hosts.

Figure 83 is a sample of an SMTP server trace using the TRACE DEBUG

statement. Although all transactions between the local and remote hosts are shown,

the data transferred by the DATA command is not shown.

In Figure 83, HOSTA is the local host, and HOSTB is the remote host. All lines starting

with 257 show the SMTP server handling note 00000001 from local user TCPUSRA.

Lines starting with a connection number of 1 show note 00000001 being sent to

TCPUSRB@HOSTB. Lines starting with a connection number of 0 show HOSTB sending a

note from TCPUSRB to the local host. The local host designates this note as note

00000002.

IBM VM SMTP Level nnn on Tue, 23 Oct 97 17:19:23 EST

257> 220 HOSTA.IBM.COM running IBM VM SMTP Level nnn

 on Tue, 23 Oct 97 17:19:25 EST

257< HELO HOSTA.IBM.COM

257> 250 HOSTA.IBM.COM is my domain name. Yours too, I see!

257< MAIL FROM:<TCPUSRA@HOSTA.IBM.COM>

257> 250 OK

257< RCPT TO:<tcpusrb@hostb>

257> 250 OK

257< DATA

257> 354 Enter mail body. End by new line with just a ’.’

257> 250 Mail Delivered

257< QUIT

257> 221 HOSTA.IBM.COM running IBM VM SMTP Level nnnMX closing connection

 1< 220 HOSTB.IBM.COM running IBM VM SMTP Level nnn

 on Tue, 23 Oct 90 17:22:53 EST

 1> EHLO HOSTA.IBM.COM

 1< 250-HOSTB.IBM.COM is my domain name.

 1< 250-EXPN

 1< 250-HELP

 1< 250 SIZE 20000768

 1> MAIL FROM:<TCPUSRA@HOSTA.IBM.COM> SIZE=210

 1< 250 OK

 1> RCPT TO:<tcpusrb@hostb.IBM.COM>

 1< 250 OK

 1> DATA

 1< 354 Enter mail body. End by new line with just a ’.’

 1< 250 Mail Delivered

 1> QUIT

 1< 221 HOSTB.IBM.COM running IBM VM SMTP Level nnnMX closing connection

 0> 220 HOSTA.IBM.COM running IBM VM SMTP Level nnn

 on Tue, 23 Oct 90 17:23:18 EST

 0< HELO HOSTB.IBM.COM

 0> 250 HOSTA.IBM.COM is my domain name.

 0< MAIL FROM:<TCPUSRB@HOSTB.IBM.COM>

 0> 250 OK

 0< RCPT TO:<tcpusra@hosta.IBM.COM>

 0> 250 OK

 0< DATA

 0> 354 Enter mail body. End by new line with just a ’.’

 0> 250 Mail Delivered

 0< QUIT

 0> 221 HOSTA.IBM.COM running IBM VM SMTP Level nnnMX closing connection

Figure 83. A Sample of an SMTP Server Trace Using the DEBUG Statement

SMTP Traces

Chapter 11. Simple Mail Transfer Protocol Traces 159

Sample LOG Information

In addition to the data that can be obtained using the TRACE command, the SMTP

server provides LOG information. This LOG information can be directed to the

console (the default), or to the SMTP LOG file on minidisk.

Figure 84 shows sample LOG information matching the sample trace shown in

Figure 83 on page 159 For example, the line starting with 10/23/97 17:23:18 shows

when HOSTB is connected to the local host’s port on connection 0 before sending

note 00000002.

Sample Resolver Trace

You can also enable the Resolver Trace for the SMTP server virtual machine. The

Resolver Trace displays all requests and responses for name resolution to the

console. To activate this type of tracing, add a TRACE RESOLVER statement to

the SMTP CONFIG file.

Figure 85 shows a sample of a resolver trace.

IBM VM SMTP Level nnn on Tue, 23 Oct 97 17:19:23 EST

10/23/97 17:19:24 Received Spool File 2289 From TCPUSRA at HOSTA

10/23/97 17:19:25 BSMTP Helo Domain: HOSTA.IBM.COM Yours too, I see!

10/23/97 17:19:25 Received Note 00000001 via BSMTP

 From <TCPUSRA@HOSTA.IBM.COM>

10/23/97 17:20:31 Delivered Note 00000001 to <tcpusrb@hostb.IBM.COM>

10/23/97 17:23:18 TCP (0) Helo Domain: HOSTB.IBM.COM

10/23/97 17:24:21 Received Note 00000002 via TCP (0)

 From <TCPUSRB@HOSTB.IBM.COM>

10/23/97 17:24:23 Delivered Note 00000002 to TCPUSRA at HOSTA

Figure 84. Sample LOG Output

10/25/97 07:32:12 Resolving Recipient Address: <tcpuser@9.67.58.233 >

10/25/97 07:32:12 Resolving Recipient Address: <tcpfoo@hostvm>

* * * * * Beginning of Message * * * * *

Query Id: 1

Flags: 0000 0001 0000 0000

Number of Question RRs: 1

Question 1: 9.67.58.233 MX IN

Number of Answer RRs: 0

Number of Authority RRs: 0

Number of Additional RRs: 0

* * * * * End of Message * * * * *

10/25/97 07:32:12 # 1 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0

10/25/97 07:32:12 # 1 Adding Request to Wait Queue

10/25/97 07:32:12 # 1 Setting Wait Timer: 30 seconds

* * * * * Beginning of Message * * * * *

Query Id: 2

Flags: 0000 0001 0000 0000

Number of Question RRs: 1

Question 1: hostvm.ENDICOTT.IBM.COM MX IN

Number of Answer RRs: 0

Number of Authority RRs: 0

Number of Additional RRs: 0

* * * * * End of Message * * * * *

Figure 85. A Sample of an SMTP Resolver Trace (Part 1 of 2)

SMTP Traces

160 z/VM: TCP/IP Diagnosis Guide

Sample Notification Trace

TCP/IP Notification Tracing is enabled via a TRACE NOTICE statement in the

SMTP CONFIG file. All TCP/IP notification events are traced to the console.

Figure 86 on page 162 shows a sample of a notification trace.

10/25/97 07:32:12 # 2 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0

10/25/97 07:32:12 # 2 Adding Request to Wait Queue

10/25/97 07:32:13 UDP packet arrived, 50 bytes, FullLength 50 bytes.

* * * * * Beginning of Message * * * * *

Query Id: 2

Flags: 1000 0101 1000 0011

Number of Question RRs: 1

Question 1: hostvm.ENDICOTT.IBM.COM MX IN

Number of Answer RRs: 0

Number of Authority RRs: 0

Number of Additional RRs: 0

* * * * * End of Message * * * * *

* * * * * Beginning of Message * * * * *

Query Id: 3

Flags: 0000 0001 0000 0000

Number of Question RRs: 1

Question 1: hostvm.ENDICOTT.IBM.COM A IN

Number of Answer RRs: 0

Number of Authority RRs: 0

Number of Additional RRs: 0

* * * * * End of Message * * * * *

10/25/97 07:32:27 # 3 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0

10/25/97 07:32:27 # 3 Adding Request to Wait Queue

10/25/97 07:32:28 UDP packet arrived, 50 bytes, FullLength 50 bytes.

* * * * * Beginning of Message * * * * *

Query Id: 3

Flags: 1000 0101 1000 0011

Number of Question RRs: 1

Question 1: hostvm.ENDICOTT.IBM.COM A IN

Number of Answer RRs: 0

Number of Authority RRs: 0

Number of Additional RRs: 0

* * * * * End of Message * * * * *

Figure 85. A Sample of an SMTP Resolver Trace (Part 2 of 2)

SMTP Traces

Chapter 11. Simple Mail Transfer Protocol Traces 161

Sample Connection Activity Trace

TCP/IP Connection Activity Tracing is enabled via a TRACE CONN statement in the

SMTP CONFIG file. All connection state changes are logged to the console.

Figure 87 shows a sample of a connection activity trace.

12/10/97 22:59:14 TCP/IP Event Notification: I/O Interrupt

12/10/97 22:59:14 TCP/IP Event Notification: IUCV Interrupt

12/10/97 22:59:14 TCP/IP Event Notification: IUCV Interrupt

12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered

12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered

12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered

12/10/97 22:59:14 TCP/IP Event Notification: Connection State Changed

12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=92

12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=50

12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=8

12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=8

12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=55

12/10/97 22:59:15 TCP/IP Event Notification: Data Delivered on Conn 1,

bytes delivered=20

12/10/97 22:59:15 TCP/IP Event Notification: Connection State Changed

12/10/97 22:59:16 TCP/IP Event Notification: Connection State Changed

12/10/97 22:59:16 TCP/IP Event Notification: Connection State Changed

Figure 86. A Sample of a Notification Trace

12/10/97 22:44:30 Connection State Change, Conn = 1, State = Open

12/10/97 22:44:31 Connection State Change, Conn = 1, State = Connection closing

12/10/97 22:44:31 Connection State Change, Conn = 1, State = Nonexistent

Figure 87. A Sample of a Connection Activity Trace

SMTP Traces

162 z/VM: TCP/IP Diagnosis Guide

Chapter 12. RPC Programs

This chapter describes Remote Procedure Call (RPC) programs, including call

messages and reply messages. For more information about RPC, see RFCs 1014

and 1057. This chapter also describes Portmapper.

General Information about RPC

The current version of RPC is Version 2. The layout for RPC messages is either a

CALL-MSG or REPLY-MSG. Both layouts need a transaction identifier (XID) to

identify and reliably map port numbers, and a field to identify whether the message

is a CALL-MSG or REPLY-MSG.

The following sections describe the structure of call and reply messages.

RPC Call Messages

The first word in a call message is the XID, the message identifier. The second

word indicates the type of message, which is 0 for a call message. Figure 88 shows

the structure of a call message. The offsets and their corresponding field

descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message (0)

X'08' RPC version

X'0C' RPC program number

X'10' Program version

X'14' Procedure number

X'18' Authentication credentials field

X'1C' Byte length of Cred Data field

X'1C'+Cred-L Authentication verifier (see Table 17 on page 164)

X'20'+Cred-L Authentication verifier data length

Data field Data specific to the procedure called.

© Copyright IBM Corp. 1987, 2005 163

Table 17 describes the RPC credentials found in the Cred data field, shown in

Figure 88.

 Table 17. RPC Credentials

Name Number Description

AUTH_NULL 0 The client does not know its identity or the server

does not need to know the identity of the client.

AUTH_UNIX 1 Client identifies itself as a UNIX system.

AUTH_SHORT 2 Used as an abbreviated authentication structure.

AUTH_DES 3 Used for a DES authentication.

RPC Reply Messages

The first word in a reply message is the XID. The second word indicates the type of

message, which is 1 for a reply message. There are two types of reply messages:

accepted and rejected. If the value of the reply_stat field is 0, the message has

been accepted. If the value of the reply_stat field is 1, the message has been

rejected.

Accepted Reply Messages

Figure 89 shows the structure of an accepted reply message. The offsets and their

corresponding field descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message, 1

X'08' Reply stat

X'0C' Authentication verifier (see Table 17)

X'10' Authentication verifier data byte length

X'14' Accept_stat

X'18' Acc_stat dependent data.

Offset 0 4 8 C

 ┌────────┬────────┬────────┬────────┐

 │ XID │00000000│RPC Ver │ Prog # │

 ├────────┼────────┼────────┼────────┤

 │Prog Ver│ Proc # │ Cred │ Cred-L │

 ├────────┴────────┴────────┴────────┤

 │ │

 │ Cred Data │

 │ │

 ├────────┬────────┬─────────────────┤

 │ Verf │ Verf-L │ │

 ├────────┴────────┘ │

 │ Vref Data │

 ├───────────────────────────────────┤

 │ │

 │ Procedure specific Data │

 │ │

 └───────────────────────────────────┘

Figure 88. RPC Call Message Structure

Remote Procedure Call Programs

164 z/VM: TCP/IP Diagnosis Guide

Acc_stat is a one word return code for NFS procedures that has a value described

in Table 18. If acc_stat=SUCCESS, the data is specific to the procedure. If

acc_stat=PROG_MISMATCH, two words with the latest and earliest supported

versions of the program are returned. For the other acc_stat values described in

Table 18, data is not returned. For more information about acc_stat values, see

RFC 1057.

 Table 18. RPC Accept_stat Values

Name Number Description

SUCCESS 0 RPC executed successfully.

PROG_UNAVAIL 1 Remote has not exported program.

PROG_MISMATCH 2 Program cannot support version number.

PROC_UNAVAIL 3 Program cannot support procedure.

GARBAGE_ARGS 4 Procedure cannot decode parameters.

Rejected Reply Messages

Figure 90 shows the structure of a rejected reply message. The offsets and their

corresponding field descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message, 1

X'08' Reply_stat, 1

X'0C' Reject_stat switch

X'10' Reject_stat specific data.

The reject_stat switch indicates the reason for a rejected reply message. If the

value of the reject_stat switch is 1, an RPC_MISMATCH, indicating that the version

of RPC is not supported, has occurred. The reject_stat dependent field, shown in

Offset 0 4 8 C

 ┌────────┬────────┬────────┬────────┐

 │ XID │00000001│Rep-stat│ Vref │

 ├────────┼────────┼────────┴────────┤

 │ Vref-L │Acc-stat│ │

 ├────────┴────────┘ │

 │ │

 │ Procedure specific Data │

 │ │

 └───────────────────────────────────┘

Figure 89. Structure of an RPC Accepted Reply Message

Offset 0 4 8 C

 ┌────────┬────────┬────────┬────────┐

 │ XID │00000001│00000001│Rej-stat│

 ├────────┴────────┴────────┴────────┤

 │ Reject stat Dependent │

 └───────────────────────────────────┘

Figure 90. Structure of an RPC Rejected Reply Message

Remote Procedure Call Programs

Chapter 12. RPC Programs 165

Figure 90, contains the latest and earliest RPC supported versions. If the value of

the reject_stat switch is 0, an AUTH_ERROR, indicating an authentication error, has

occurred. The reject stat dependent field, shown in Figure 90, contains a one word

auth_stat value. Table 19 describes the auth_stat values. For more information

about auth_stat values, see RFC 1057.

 Table 19. RPC Auth_stat Values

Name Number Description

AUTH_BACKRED 1 Bad credential, seal broken

AUTH_CTEDCRED 2 Client must begin new session

AUTH_ERF 3 Bad verifier, seal broken

AUTH_REJECTEDVERF 4 Verifier expired or replayed

AUTH_TOOWEAK 5 Rejected for security reasons

RPC Support

RPC supports the following functions:

Authentication

The mount service uses AUTH_UNIX and AUTH_NONE style authentication

only.

Transport Protocols

The mount service is supported on both UDP and TCP.

Port Number

Consult the server’s portmapper, described in RFC 1057, to find the port

number on which the mount service is registered. The port number is

usually 111.

Portmapper

Portmapper is a program that maps client programs to the port numbers of server

programs. The current version for RPC program 100000 (Portmapper) is Version 2.

For more information about Portmapper, see Appendix A of RFC 1057.

Portmapper Procedures

Table 20 describes Portmapper procedures.

 Table 20. Portmapper Procedures

Name Number Description

PMAPROC_NULL 0 Procedure 0 is a dummy procedure that senses

the server.

PMAPROC_SET 1 Registers a program on Portmapper.

PMAPROC_UNSET 2 Removes a registered program from Portmapper.

PMAPROC_GETPORT 3 Gives client’s program and version number. The

server responds to the local port of the program.

PMAPROC_DUMP 4 Lists all entries in Portmapper. This is similar to

the RPCINFO command.

PMAPROC_CALLIT 5 Used by a client to call another remote procedure

on the same host without the procedure number.

Remote Procedure Call Programs

166 z/VM: TCP/IP Diagnosis Guide

Chapter 13. RouteD Diagnosis

RouteD is a server that implements the Routing Information Protocol (RIP)

described in RFC 1058 (RIP Version 1) and RFC 1723 (RIP Version 2). It provides

an alternative to static TCP/IP gateway definitions. When properly configured, the

z/VM host running with RouteD becomes an active RIP router in a TCP/IP network.

The RouteD server dynamically creates and maintains network routing tables using

RIP. This protocol allows gateways and routers to periodically broadcast their

routing tables to adjacent networks, and enables the RouteD server to update its

host routing table. For example, the RouteD server can determine if a new route

has been created, if a route is temporarily unavailable, or if a more efficient route

exists for a given destination.

Before RouteD was implemented for TCP/IP, static route tables were used for

routing IP datagrams over connected networks. However, the use of static routes

prevents a host from being readily able to respond to changes in the network. By

implementing the Routing Information Protocol (RIP) between a host and TCP/IP,

the RouteD server dynamically updates the internal routing tables when changes to

the network occur.

The RouteD server reacts to network topology changes on behalf of TCP/IP by

maintaining the host routing tables, processing and generating RIP datagrams, and

performing error recovery procedures.

Figure 91 shows the RouteD environment.

VM

PS/2

Token Ring

ROUTED

TCPIP

3172

ROUTED SNMPD

TCPIP

SNMPREQD

Figure 91. RouteD Environment

© Copyright IBM Corp. 1987, 2005 167

The RouteD protocol is based on the exchange of RIP messages. There are two

types of messages:

v Request message - Sent from a client (another RIP router) as a request to

transmit all or part of the receiving host’s routing table.

v Response message - Sent from RouteD to a client (another RIP router)

containing all or part of the sending host’s routing table.

Incoming Datagram RouteD Processing

Only RIP datagrams are processed by the RouteD server, as opposed to the router

itself, which actually routes datagrams as previously described. Incoming RIP

datagrams contain one of the following commands:

v Request

v Response

v Trace On

v Trace Off

Incoming Request Datagrams

Request datagrams are requests from other routers for one or more of the

RouteD server’s routes. The internet addresses of the desired routes are

listed in the datagram. A special form of the Request datagram requests a

single route in an illegal address family (AF_UNSPEC) and lists a metric

(hop count) of 16, which is considered infinity in RIP. This request is treated

as a request for the server’s complete routing table.

Note: This form of request is issued by RouteD only during initialization.

Incoming Response Datagrams

Response datagrams contain routing table entries, and are sent by routers

periodically and on demand. The RouteD server transmits a complete set of

routes on each attached network every thirty seconds, by using Response

datagrams.

Incoming Trace On and Trace Off Datagrams

Tracing is not officially supported in RIP, but these datagram types are

reserved and most RouteD servers choose to process them. Trace On

turns on tracing (or expands the amount of tracing currently in effect), and

Trace Off turns off tracing.

Outgoing Datagram RouteD Generation

The RouteD server transmits only Request and Response datagrams.

Outgoing Request Datagrams

Request datagrams are generated during RouteD startup, requesting

complete route tables from adjacent routers. This is the only time Request

datagrams are generated by RouteD. The other form of the Request

datagram is used by other applications to query the server route tables.

Outgoing Response Datagrams

The RouteD server transmits a complete set of routes to adjacent routers

every thirty seconds using Response datagrams. RouteD servers that are

started as passive routers collect data only; they provide routing information

only when requested via a port other than port 520.

 In addition, the RouteD server replies to incoming Request datagrams by

sending Response datagrams containing the requested routing information.

RouteD Diagnosis

168 z/VM: TCP/IP Diagnosis Guide

RouteD Route Table and Interface List

RouteD maintains its own route table, which is similar to IP’s. While these two

tables must be synchronized, they do not need to be identical. There are cases

where routes are known to RouteD but are not known to IP, and other cases where

routes are known to IP but are not known to RouteD. Therefore, two tables must be

maintained. RouteD’s route table is implemented as a hash table, with doubly linked

lists used as hash chains to hold collisions.

RouteD also maintains an interface list, which contains all the active interfaces that

RouteD can use. When an interface’s three minute timer expires, that interface is

removed from the active interface list. When a datagram arrives on that interface, it

is again added to the active interface list. The RouteD interface list is implemented

as a linked list.

Diagnosing Problems

Problems with RouteD are generally reported under one of the following categories:

v “Connection Problems”

v “PING Failures” on page 170

v “Incorrect Output” on page 171

v “Session Outages” on page 172

Use the information provided in the following sections for problem determination

and diagnosis of errors reported against RouteD.

Connection Problems

RouteD connection problems are reported when RouteD is unable to connect to

TCP/IP. Generally, this type of problem is caused by an error in the TCP/IP

configuration or supporting definitions.

In configurations with multiple stacks, a RouteD server must be started for each

stack that requires routing services. To associate with a particular stack, use the

PORT statement of the TCP/IP configuration file (PROFILE TCPIP) to define the

name of the RouteD server virtual machine that will service that stack. The user ID

of the RouteD server for a given stack must also be included in its OBEY list in

PROFILE TCPIP.

Documentation

The following documentation should be available for initial diagnosis of RouteD

connection problems:

v PROFILE TCPIP information

v TCPIP DATA information

v DTCPARMS information

v RouteD ETC GATEWAYS file information

v ROUTED CONFIG file information

v Trace output

Analysis

Refer to the TCP/IP Planning and Customization for problems related to TCP/IP

configuration.

Diagnostic steps for connection problems:

1. Verify the accuracy of the RouteD startup parameters that have been specified

in the DTCPARMS file.

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 169

2. Make sure that RouteD is configured correctly in the PROFILE TCPIP

information.

3. UDP port 520 must be reserved for RouteD. Verify that the assigned port

number and the RouteD server user ID are correct.

4. Ensure that TCPIP DATA designates the correct TCP/IP stack machine.

PING Failures

If the PING command fails on a system where RouteD is being used, a client is

unable to get a response to a PING command. Before doing anything else, run

NETSTAT GATE. This should tell you which gateways are configured. If no gateways

are configured, PING will not work. In addition to this, run NETSTAT DEVLINK, and

ensure that the device for the link of the address you are trying to PING is in

″Ready″ status. If the device status is ″Inactive″, PING will not work.

Documentation

The following documentation should be available for initial diagnosis of ping failures:

v PROFILE TCPIP information

v NETSTAT GATE command results

More documentation that might be needed is described in the “Analysis” section.

Analysis

Table 21 on page 171 shows symptoms of ping failures and describes the steps

needed for initial diagnosis of the error.

RouteD Diagnosis

170 z/VM: TCP/IP Diagnosis Guide

Table 21. RouteD ping Failures

ping Failure Action Steps

Incorrect response

(ping timed out or

Network

Unreachable)

1. Make sure that the ping command contains a valid destination IP

address for the remote host.

If the destination IP address is a virtual IP address (VIPA), make

sure that VIPA is defined correctly. See the TCP/IP Planning and

Customization for information about rules and recommendations

for defining a virtual IP address.

2. Make sure that the router providing the RIP support involved in

the ping transaction is active and is running with a correct level of

some application that provides RIP support.

If the destination router is not running RIP, make sure that static

routes are defined from the destination router to the local host.

3. If the ping command was issued from a client on a z/VM server,

issue a NETSTAT GATE command to display the routing tables.

Verify that the routes and networks are correct as defined in

PROFILE TCPIP and the ETC GATEWAYS file. In addition, issue

a NETSTAT DEVLINK command to insure that the device associated

with the link for the desired IP address is in ″Ready″ status.

4. If the ping command was issued from a workstation operating

system, verify that the routes and networks are defined correctly

in the TCP/IP configuration and the ETC GATEWAYS file of

TCP/IP.

5. If there are no problems with the routes and networks, check for

broken or poorly-connected cables between the client and the

remote host. This includes checking the internet interfaces (such

as Token-Ring and Ethernet) on the server.

6. Consider whether changes may have taken place elsewhere in

the network. For example, if a second host has been added using

the same IP address as a host involved in routing your PING’s

packets, the packets may get misrouted and the PING will time

out. Likewise, failure to subnet when required can lead to packets

being incorrectly routed. Some routing hardware uses more

robust routing algorithms than others, so if hardware has changed

anywhere along the route of your PING, an unsupported network

configuration that previously functioned might now fail.

Unknown Host If the ping command was issued with a name, try again with the

actual IP address. If the ping command is successful with an IP

address, then the problem is with nameserving and not RouteD.

Incorrect Output

Problems with incorrect output are reported when the data sent to the client is not

seen in its expected form. This could be incorrect TCP/IP output, RIP commands

that are not valid, incorrect RIP broadcasting information, incorrect updates of

routing tables, or truncation of packets.

Documentation

The following documentation should be available for initial diagnosis of incorrect

output:

v TCP/IP and/or RouteD Messages

v Trace data

v PROFILE TCPIP information

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 171

Analysis

Table 22 shows symptoms of incorrect output and describes the actions needed for

initial diagnosis of the error.

 Table 22. RouteD Incorrect Output

Incorrect Output Action Steps

TCP/IP Incorrect Output 1. If the TCP/IP console shows a message, refer to TCP/IP

Messages and Codes and follow the directions for system

programmer response for the message.

2. In the event of TCP/IP loops or hangs, refer to the z/VM:

Diagnosis Guide.

RouteD Incorrect Output If the RouteD console shows a message, refer to TCP/IP

Messages and Codes and follow the directions for system

programmer response for the message.

Session Outages

Session outages are reported as an unexpected abend or termination of a TCP/IP

connection.

Documentation

The following documentation should be available for initial diagnosis of session

outages:

v TCP/IP and/or RouteD Messages

v Trace data

v TCPIP PROFILE information

v NETSTAT GATE command results

Analysis

Table 23 shows symptoms of session outages and describes the steps needed for

initial diagnosis of the error.

 Table 23. RouteD Session Outages

Session Outage Action Steps

TCP/IP session

outage

1. If the TCP/IP console shows a TCP/IP error message, refer

toTCP/IP Messages and Codes and follow the directions for

system programmer response for the message.

2. In the event of a TCP/IP abend, refer to the z/VM: Diagnosis

Guide.

session outage If an error message is displayed, refer to TCP/IP Messages and

Codes and follow the directions for system programmer response

for the message.

Activating RouteD Trace and Debug

RouteD trace facilities exist that can be useful in identifying the cause of routing

problems. This section discusses these trace and debug requests and how they can

be started and stopped.

The activation of trace facilities in RouteD is accomplished by specifying the desired

trace level parameter in addition to the usual processing parameters on command

invocation.

RouteD Diagnosis

172 z/VM: TCP/IP Diagnosis Guide

You can initialize RouteD with the tracing option. The tracing option is set by editing

the DTCPARMS file, and specifying the necessary parameters for the :Parms. tag

of the DTCPARMS file.

RouteD Trace and Debug Commands

Purpose

Use the ROUTED command to enable the following trace and debug parameters.

�� ROUTED

�

–dp

(1)

–t

 ��

Notes:

1 The –t option can be repeated up to 4 times to achieve the desired level of

tracing.

Trace information is written to the spooled console of the server virtual machine.

The trace and debug parameters that can be specified for the RouteD server are:

Operands

–dp

Activates tracing of packets to and from adjacent routers in addition to RIP

network routing tables that are received and broadcasted. Packets are

displayed in data format. Output is written to the console.

–t Activates tracing of actions by the RouteD server.

–t –t

Activates tracing of actions and packets sent or received.

–t –t –t

Activates tracing of actions, packets sent or received, and packet history.

Circular trace buffers are used for each interface to record the history of all

packets traced. This history is included in the trace output whenever an

interface becomes inactive.

–t –t –t –t

Activates tracing of actions, packets sent or received, packet history, and packet

contents. The RIP network routing information is included in the trace output.

Note: Spaces are required between each –t parameter when more than one is

specified.

 Usage Notes

1. For information on the remaining available RouteD parameters see the TCP/IP

Planning and Customization.

2. Parameters are separated by one or more blanks.

3. Parameters can be specified in mixed case.

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 173

RouteD Trace and Debug SMSG Commands

Purpose

Use the SMSG command to enable or disable RouteD trace and debug parameters

that may or may not have been specified at server initialization or on a previous

SMSG command. The {q} form of an operand deactivates the function associated

with that operand.

�� SMSG server_id

�

 HELP

PARMS

parms

TABLES

 ��

Operands

server_id

Specifies the user ID of the virtual machine running the VM RouteD server.

HELP

Provides a list of valid SMSG commands accepted by RouteD.

PARMS

One or more of the following parameters separated by a space.

parms

–dp[q]

Activates tracing of packets to and from adjacent routers in addition to RIP

network routing tables that are received and broadcasted. Packets are

displayed in data format. Output is written to the console.

–dq

Disables “–dp” tracing.

–t Activates tracing of actions by the RouteD server.

–t –t

Activates tracing of actions and packets sent or received.

–t –t –t

Activates tracing of actions, packets sent or received, and packet history.

Circular trace buffers are used for each interface to record the history of all

packets traced. This history is included in the trace output whenever an

interface becomes inactive.

–t –t –t –t

Activates tracing of actions, packets sent or received, packet history, and

packet contents. The RIP network routing information is included in the

trace output.

Note: Spaces are required between each –t parameter when more than

one is specified.

–tq

Disable all “–t” traces.

RouteD Diagnosis

174 z/VM: TCP/IP Diagnosis Guide

TABLES

Activates the display of the following RouteD internal tables;

routing

RouteD’s routing tables

interface

Interface connections defined by ″Device and Link″ statements.

gateways options

Options as defined in the ″ETC GATEWAYS″ file

 Note: This option is provided primarily for debugging purposes only.

Usage Notes

1. For information about other supported RouteD SMSG parameters see the

TCP/IP Planning and Customization.

Examples

The following SMSG command passes parameters to a RouteD server running in

the ROUTED2 virtual machine.

smsg routed2 parms –dp –t

Ready;

10:04:20 * MSG FROM ROUTED2 : PARMS –DP –T

Trace Output

Figure 92 shows an example of the output received from a RouteD server with

tracing enabled (that is, the –dp –t –t –t –t parameter had been specified).

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 175

DTCRUN1011E Server started at 08:39:00 on 27 Jan 1999 (Wednesday)

DTCRUN1011E Running "ROUTED -DP -T -T -T -T"

DTCRTD4820I VM TCP/IP RouteD Server level 520

DTCRTD4929I Port 520 assigned to router

DTCRTD4828I Input parameter(s): -DP -T -T -T -T

DTCRTD4868I Tracing actions enabled Wed Jan 27 08:39:02 1999

DTCRTD4869I Tracing packets enabled Wed Jan 27 08:39:02 1999

DTCRTD4870I Tracing history enabled Wed Jan 27 08:39:02 1999

DTCRTD4871I Tracing packet contents enabled Wed Jan 27 08:39:02 1999

DTCRTD4823I Tracing debug packets enabled Wed Jan 27 08:39:02 1999

DTCRTD4932I **

DTCRTD8488I Opening RouteD config file (ROUTED CONFIG)

DTCRTD4932I **

DTCRTD8497I RIP_SUPPLY_CONTROL: RIP1

DTCRTD8497I RIP_RECEIVE_CONTROL: ANY

DTCRTD8498I RIP2 authentication disabled at router-wide level (all interfaces)

DTCRTD4932I **

DTCRTD4850I Processing interface TR1

DTCRTD4932I **

DTCRTD4948I This interface is not point-to-point

DTCRTD4943I Adding network route for interface

DTCRTD4882I Wed Jan 27 08:39:03 1999:

DTCRTD4883I ADD destination 9.0.0.0, router 9.127.32.100, metric 1, flags UP,

 state INTERFACE|CHANGED|INTERNAL, timer 0

DTCRTD4943I Adding subnetwork route for interface

DTCRTD4883I ADD destination 9.127.32.0, router 9.127.32.100, metric 1, flags UP,

 state INTERFACE|CHANGED|SUBNET, timer 0

DTCRTD4932I **

DTCRTD4850I Processing interface PORTER

DTCRTD4932I **

DTCRTD4940I Point-to-point interface, using dstaddr

DTCRTD4943I Adding subnetwork route for interface

DTCRTD4883I ADD destination 9.127.68.20, router 9.127.68.21, metric 1, flags UP,

 state INTERFACE|CHANGED|SUBNET, timer 0

DTCRTD4943I Adding host route for interface

DTCRTD4883I ADD destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST,

 state INTERFACE|CHANGED, timer 0

Figure 92. A sample RouteD Server Trace (Part 1 of 4)

RouteD Diagnosis

176 z/VM: TCP/IP Diagnosis Guide

DTCRTD4932I **

DTCRTD4850I Processing interface STOUT

DTCRTD4932I **

DTCRTD4940I Point-to-point interface, using dstaddr

DTCRTD4943I Adding subnetwork route for interface

DTCRTD4883I ADD destination 9.127.68.24, router 9.127.68.25, metric 1, flags UP,

 state INTERFACE|CHANGED|SUBNET, timer 0

DTCRTD4943I Adding host route for interface

DTCRTD4883I ADD destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST,

 state INTERFACE|CHANGED, timer 0

DTCRTD4932I **

DTCRTD4934I Opening ETC GATEWAYS file (ETC GATEWAYS)

DTCRTD4932I **

DTCRTD4925I Start of ETC GATEWAYS processing

DTCRTD4945I ifwithnet: compare with PORTER

DTCRTD4947I netmatch 9.127.68.22 and 9.127.68.21

DTCRTD4936I Adding passive host route 9.127.68.22 via gateway 9.127.68.21, metric 1

DTCRTD4883I DELETE destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST,

 state INTERFACE|CHANGED, timer 0

DTCRTD4921I Deleting route to interface PORTER? (timed out?)

DTCRTD4883I ADD destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST,

 state PASSIVE|INTERFACE|CHANGED, timer 0

DTCRTD4945I ifwithnet: compare with STOUT

DTCRTD4947I netmatch 9.127.68.26 and 9.127.68.25

DTCRTD4936I Adding passive host route 9.127.68.26 via gateway 9.127.68.25, metric 1

DTCRTD4883I DELETE destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST,

 state INTERFACE|CHANGED, timer 0

DTCRTD4921I Deleting route to interface STOUT? (timed out?)

DTCRTD4883I ADD destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST,

 state PASSIVE|INTERFACE|CHANGED, timer 0

DTCRTD4926I End of ETC GATEWAYS processing

DTCRTD4849I RouteD Server started

Figure 92. A sample RouteD Server Trace (Part 2 of 4)

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 177

=============== Sending packet to client (length=24)

0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000

0020(32)

DTCRTD4899I REQUEST to 9.127.32.255 -> 520 ver 1 Wed Jan 27 08:39:18 1999

=============== RIP net info (length=20)

0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000

0020(32)

DTCRTD4903I (request for full tables)

=============== Sending packet to client (length=24)

0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000

0020(32)

DTCRTD4899I REQUEST to 9.127.68.22 -> 520 ver 1 Wed Jan 27 08:39:21 1999

=============== RIP net info (length=20)

0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000

0020(32)

DTCRTD4903I (request for full tables)

=============== Sending packet to client (length=24)

0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000

0020(32)

DTCRTD4899I REQUEST to 9.127.68.26 -> 520 ver 1 Wed Jan 27 08:39:21 1999

=============== RIP net info (length=20)

0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000

0020(32)

DTCRTD4903I (request for full tables)

DTCRTD4829I Waiting for incoming packets

=============== Received packet from client (length=4)

0000 02010000 00000002 00eb24b0 00d33410 00000000 00000000 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.29 -> 520 ver 1 Wed Jan 27 08:39:21 1999

=============== Received packet from client (length=24)

0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.252 -> 520 ver 1 Wed Jan 27 08:39:21 1999

=============== RIP net info (length=20)

0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000

0020(32)

DTCRTD4902I destination 0.0.0.0 metric 4

DTCRTD4882I Wed Jan 27 08:39:23 1999:

DTCRTD4883I ADD destination 0.0.0.0, router 9.127.32.252, metric 5, flags UP|GATEWAY,

 state CHANGED|DEFAULT, timer 0

DTCRTD4829I Waiting for incoming packets

=============== Received packet from client (length=24)

0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.251 -> 520 ver 1 Wed Jan 27 08:39:24 1999

=============== RIP net info (length=20)

0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000

0020(32)

DTCRTD4902I destination 0.0.0.0 metric 4

DTCRTD4829I Waiting for incoming packets

Figure 92. A sample RouteD Server Trace (Part 3 of 4)

RouteD Diagnosis

178 z/VM: TCP/IP Diagnosis Guide

=============== Received packet from client (length=24)

0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.249 -> 520 ver 1 Wed Jan 27 08:39:36 1999

=============== RIP net info (length=20)

0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000

0020(32)

DTCRTD4902I destination 0.0.0.0 metric 4

DTCRTD4829I Waiting for incoming packets

=============== Received packet from client (length=4)

0000 02010000 00020000 00000000 00000000 00000000 00000005 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.29 -> 520 ver 1 Wed Jan 27 08:39:38 1999

DTCRTD4829I Waiting for incoming packets

=============== Received packet from client (length=24)

0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000

0020(32)

DTCRTD4899I RESPONSE from 9.127.32.250 -> 520 ver 1 Wed Jan 27 08:39:41 1999

=============== RIP net info (length=20)

0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000

0020(32)

DTCRTD4902I destination 0.0.0.0 metric 4

Figure 92. A sample RouteD Server Trace (Part 4 of 4)

RouteD Diagnosis

Chapter 13. RouteD Diagnosis 179

RouteD Diagnosis

180 z/VM: TCP/IP Diagnosis Guide

Chapter 14. Diagnosing MPRoute Problems

This chapter provides information and guidance to help you diagnose MPRoute

problems.

For IPv4, MPRoute implements the OSPF protocol described in RFC 1583 (OSPF

Version 2) and the RIP protocols described in RFC 1058 (RIP Version 1) and in

RFC 1723 (RIP Version 2). For IPv6, MPRoute implements the IPv6 OSPF protocol

described in RFC 2740 (OSPF for IPv6) and the IPv6 RIP protocol described in

RFC 2080 (RIPng for IPv6).

MPRoute provides an alternative to the static TCP/IP GATEWAY definitions. When

configured properly, the z/VM host running MPRoute becomes an active OSPF or

RIP (or both) router in a TCP/IP network. The routing protocols are used to maintain

the host routing table dynamically. For example, MPRoute can determine that a new

route has been created, that a route is temporarily unavailable, or that a more

efficient route exists.

MPRoute works best without static routes, and the use of static routes (defined

through the GATEWAY TCP/IP configuration statement) is not recommended. Static

routes might interfere with MPRoute’s ability to discover a better route to the

destination or to switch to another route if the destination becomes unreachable.

For example, if you define a static host route through one interface and that

interface becomes unreachable, MPRoute does not define a route to that same host

through an alternative interface.

If you must define static routes, all static routes are considered to be of equal cost

and will not be replaced by OSPF or RIP routes. Use extreme care when working

with static routes and MPRoute. Set IMPORT_STATIC_ROUTES = YES on the

AS_Boundary_Routing or IPv6_AS_Boundary_Routing configuration statement, or

both. Alternatively, set SEND_STATIC_ROUTES = YES on the RIP_Interface or

IPv6_RIP_Interface configuration statement, or both. These settings allow the static

routes to be advertised to other routers.

Unlike static routes added through the GATEWAY statement, generated static

routes can be replaced by dynamic routes learned by MPRoute. When a subnet

mask is specified for IPv4 home addresses, the TCP/IP server automatically

generates a direct static route to the subnet described by the IP address and mask.

For IPv6 addresses, the TCP/IP server automatically generates a direct static route

to the network described by the first 64 bits of the address.

MPROUTE must be defined correctly to TCP/IP. For detailed information about

TCP/IP definitions, refer to the chapter on configuring MPROUTE in z/VM: TCP/IP

Planning and Customization.

Categorizing MPRoute Problems

Problems with MPRoute are generally reported under one of the following

categories:

v Abends

v MPRoute connection problems

v Routing failures.

These categories are described in the following sections.

© Copyright IBM Corp. 1987, 2005 181

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Abends

An abend during MPRoute processing should result in messages and error-related

information being sent to the MPRoute virtual machine’s console. A dump of the

error is needed unless the symptoms match a known problem.

MPRoute Connection Problems

MPRoute connection problems are reported when MPRoute is unable to connect to

TCP/IP or to one of the ports required for OSPF or RIP communication. Generally,

an inability to connect to TCP/IP is caused by an error in the configuration or

definitions in TCP/IP. An inability to connect to one of the required ports is generally

caused by an error in the configuration or definitions in TCP/IP or by attempting to

start MPRoute when either MPRoute or RouteD is already connected to the

specified stack.

If MPRoute cannot communicate with the stack or is unable to initialize its required

ports, it issues an error message describing the problem and terminates.

Routing Failures

Routing problems are usually the result of outages in a network and a lack of

alternative routing paths available for recovery. Routing problems can also be the

result of incorrect configurations in the channel-attached and network-attached

routers as well as incorrect ARP entries. PING and TRACERTE commands to and

from a z/VM host are useful diagnosis aids for problem determination. If a PING or

TRACERTE command fails on a system where MPRoute is being used, a client is

unable to get a positive response to a PING or TRACERTE command. Before doing

any other problem determination, issue the NETSTAT GATE and SMSG server_id

RTTABLE or SMSG server_id RT6TABLE commands on the local and remote hosts

to get the routing table information for both the TCP/IP stack and MPRoute.

From the NETSTAT GATE outputs, determine which route is used to reach the

destination and determine the route-active state. For IPv4, a routing table is

searched in the following order, starting with the most specific to the least specific:

1. Host Routes

2. Subnet Routes

3. Network Routes

4. Supernet Routes

5. Default Routes

For IPv6, a routing table is searched in the following order, starting with the most

specific to the least specific:

1. Host Routes

2. Prefix Routes

3. Default Routes

If there are no active routes available to reach the destination or if there are

improperly configured channel-attached or network-attached routers along the

routing path, the PING and TRACERTE commands will fail. To function correctly,

PING requires active routes in both directions between the PING origin and the

PING destination. If the routes are shown to be active at the local and remote

hosts, the problem is most likely caused by a router along the routing path. Use the

output from the TRACERTE command to locate the suspect router.

Diagnosing MPRoute Problems

182 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

Documenting Routing Failures

The following documentation should be available for initial diagnosis of routing

failures:

v The MPRoute virtual machine’s console.

v Output from NETSTAT GATE.

v The file containing MPRoute’s trace and debug information. For details, see

“MPRoute Traces and Debug Information.”

v Output from appropriate MPRoute SMSG commands as described in “Using

Privileged MPRoute SMSG Commands.”

Guidelines for Analyzing Routing Failures

When analyzing routing failures, follow these guidelines:

v Make sure that the address used in attempting to contact the remote host is a

valid IP address.

v If the output from the NETSTAT GATE command does not show the expected

results relative to the desired destination, do one or more of the following:

– Make sure that the router(s) involved in providing information relative to this

destination are operational and participating in the correct routing protocol.

– Make sure that the physical connections involved in reaching the destination

are active.

– Use the MPRoute SMSG commands to determine whether anything in the

configuration or current state of MPRoute has caused a route to the

destination to be absent. See “Using Privileged MPRoute SMSG Commands.”

v Make sure routing is possible to and from the z/VM host. For most TCP/IP

communications, two-way routing is required: the origin must have routes to

reach the destination, and the destination must have routes to reach the origin.

So even if the NETSTAT GATE command you issue at the origin shows correct

routing, you must also issue the NETSTAT GATE command at the destination to

verify that it can send replies back to the origin.

Using Privileged MPRoute SMSG Commands

The z/VM Special Message Facility (SMSG) command provides an interactive

interface to the MPRoute virtual machine to perform privileged system

administration tasks.

Privileged users are specified in the OBEY list of the TCP/IP server configuration

file.

Note: Command responses are returned to the originator of the command through

CP MSG commands.

For information about the MPRoute SMSG commands, see “Dynamic Server

Operation” in z/VM: TCP/IP Planning and Customization.

MPRoute Traces and Debug Information

MPRoute internal tracing and debugging can be started when MPRoute is started.

Also, the SMSG command can be used to start, stop, or alter MPRoute’s tracing

and debugging after MPRoute has been started.

This section describes each of these methods.

Diagnosing MPRoute Problems

Chapter 14. Diagnosing MPRoute Problems 183

|
|
|
|
|
|

|
|
|

|
|

|
|

Starting MPRoute Tracing and Debugging from the z/VM Console

If MPRoute is started from the command line (using the MPROUTE command), you

can specify parameters to indicate the level of tracing or debugging you want:

─tn and -6tn (where n is a supported trace level)

These options specify the MPRoute external tracing levels, with -tn covering

both MPRoute initialization and IPv4 routing protocols and -6tn covering

IPv6 routing protocols. These options provide information about the

operation of the routing application and can be used for many purposes,

such as debugging a configuration, education on the operation of the

routing application, verification of test cases, and so on. The following trace

levels are supported:

v 1 = Informational messages

v 2 = Formatted packet trace

─dn and -6dn (where n is a supported debug level)

These options specify the MPRoute internal debugging levels, with -dn

covering both MPRoute initialization and IPv4 routing protocols and -6dn

covering IPv6 routing protocols. These options provide internal debugging

information needed for debugging problems. The following levels are

supported:

v 1 = Internal debugging messages

v 2 = Unformatted hexadecimal packet trace

v 3 = Function entry or exit trace

v 4 = Task add or run

Notes:

1. The -tn, -6tn, -dn, and -6dn options affect MPRoute performance. As a result,

you might have to increase the dead router interval on OSPF and IPv6 OSPF

interfaces to prevent neighbor adjacencies from collapsing.

2. The trace and debug levels are cumulative: each level includes all lower levels.

For example, -t2 provides formatted packet trace and informational messages.

You can enter more than one parameter by inserting a space after each

parameter; for example, mproute -t1 -d2, which is the trace level most often

requested by support.

3. You can specify parameters in mixed case.

Starting MPRoute Tracing and Debugging using the SMSG Command

�� SMSG server_id DEBUG=debug_level

DEBUG6=debug6_level

TRACE=trace_level

TRACE6=trace6_level

 ��

Operands

server_id

Specifies the user ID of the MPRoute server virtual machine.

Diagnosing MPRoute Problems

184 z/VM: TCP/IP Diagnosis Guide

|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|

DEBUG=debug_level

Sets or changes the debug level for MPRoute initialization as well as IPv4

routing protocols. The following debug levels are available:

debug_level Description

0 Turns debug messages off.

1 Provides internal debugging messages.

2 Provides unformatted hex packet tracing.

3 Provides function entry/exit trace.

4 Provides task add/run.

DEBUG6=debug6_level

Sets or changes the debug level for IPv6 routing protocols. The following debug

levels are available:

debug6_level Description

0 Turns debug messages off.

1 Provides internal debugging messages.

2 Provides unformatted hex packet tracing.

3 Provides function entry/exit trace.

4 Provides task add/run.

TRACE=trace_level

Sets or changes the trace level for MPRoute initialization as well as IPv4

routing protocols. The following trace levels are available:

trace_level Description

0 Turns MPRoute tracing off.

1 Provides all informational messages.

2 Provides formatted packet tracing.

TRACE6=trace6_level

Sets or changes the trace level for IPv6 routing protocols. The following trace

levels are available:

trace6_level Description

0 Turns MPRoute tracing off.

1 Provides all informational messages.

2 Provides formatted packet tracing.

Usage Notes

v Use of MPRoute debugging and tracing affect MPRoute performance. As a

result, you may have to increase the dead router interval on OSPF and IPv6

OSPF interfaces to prevent neighbor adjacencies from collapsing.

v The trace and debug levels are cumulative; each level includes all lower levels.

Examples

1. The following SMSG command passes a trace operand to an MPRoute server

running in the MPROUTE1 virtual machine.

Diagnosing MPRoute Problems

Chapter 14. Diagnosing MPRoute Problems 185

|
|

|
|
|

||

||

||

||

||

||

|
|

|
|
|

||

||

||

||

smsg mproute1 trace=0

Ready;

07:02:30 * MSG FROM MPROUTE1 : MPROUTE SMSG command accepted

Destination of MPRoute Trace and Debug Output

Output from MPRoute’s tracing and debugging is written to the z/VM console.

Sample MPRoute Trace Output

The following is a sample MPRoute initialization and IPv4 routing protocol trace.

Numbers in reverse type match the explanations that follow the sample.

 DTCRUN1022I Console log will be sent to default owner ID: TCPMAINT

 DTCRUN1022I Console log will be sent to redefined owner ID: TCPMNTM0

 DTCRUN1027I Server will use TcpipUserid TCPIPM0

 DTCRUN1011I Server started at 13:49:26 on 24 May 2005 (Tuesday)

 DTCRUN1011I Running "MPROUTE -T1"

�1� EZZ7800I MPROUTE STARTING

 EZZ7845I Established affinity with TCPIPM0

 EZZ7817I Using defined OSPF protocol 89

 EZZ7838I Using configuration file: MPROUTE CONFIG

�2� EZZ7883I Processing interface from stack, address 10.0.1.1, name M0TOGLAN1, index 1, flags 463

 EZZ7883I Processing interface from stack, address 10.0.0.5, name M0TOM3, index 3, flags 451

 EZZ7883I Processing interface from stack, address 10.0.0.1, name M0TOM4, index 4, flags 451

 EZZ8023I The RIP routing protocol is Enabled

 EZZ8036I The IPv6 RIP routing protocol is Enabled

 EZZ7937I The IPv4 OSPF routing protocol is Enabled

 05/24 17:49:27 EZZ8050I Updating BSD Route Parms for link M0TOM4, MTU 32760, metric 1, subnet 255.255.255.252,

 destination 0.0.0.0

�3� 05/24 17:49:27 EZZ8057I Added network 10.0.0.0 to interface 10.0.0.1 on net 4 interface M0TOM4

 05/24 17:49:27 EZZ7827I Adding stack route to 10.0.0.0, Mask 255.255.255.252 via 0.0.0.0, link M0TOM4, metric 1, type 1

 05/24 17:49:27 EZZ7879I Joining multicast group 224.0.0.9 on interface 10.0.0.1

 05/24 17:49:27 EZZ8050I Updating BSD Route Parms for link M0TOM3, MTU 32760, metric 1, subnet 255.255.255.252,

 destination 0.0.0.0

 05/24 17:49:27 EZZ8057I Added network 10.0.0.4 to interface 10.0.0.5 on net 3 interface M0TOM3

 05/24 17:49:27 EZZ7827I Adding stack route to 10.0.0.4, Mask 255.255.255.252 via 0.0.0.0, link M0TOM3, metric 1, type 1

�4� 05/24 17:49:27 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:27 EZZ7879I Joining multicast group 224.0.0.5 on interface 10.0.0.5

�5� 05/24 17:49:27 EZZ7913I State change, interface 10.0.0.5, new state 16, event 1

 .

 .

 .

 EZZ7875I No IPv4 default route installed

 EZZ7898I MPROUTE INITIALIZATION COMPLETE

 05/24 17:49:27 EZZ7934I Originating LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

�6� 05/24 17:49:27 EZZ8011I send request to address 224.0.0.9

 05/24 17:49:27 EZZ8015I sending packet to 224.0.0.9

 05/24 17:49:27 EZZ8015I sending packet to 224.0.0.9

 05/24 17:49:27 EZZ8021I sending RIP2 response to address 224.0.0.9 from 10.0.0.1 in 1 packets with 2 routes

 05/24 17:49:27 EZZ8004I response received from host 10.0.0.2

 05/24 17:49:27 EZZ8010I update route to net 10.0.0.2 at metric 1 hops via router 10.0.0.2

 05/24 17:49:27 EZZ7827I Adding stack route to 10.0.0.2, Mask 255.255.255.255 via 0.0.0.0, link M0TOM4, metric 1, type 129

 05/24 17:49:27 EZZ8010I update route to net 10.0.3.0 at metric 2 hops via router 10.0.0.2

 05/24 17:49:27 EZZ7827I Adding stack route to 10.0.3.0, Mask 255.255.255.0 via 10.0.0.2, link M0TOM4, metric 2, type 130

 05/24 17:49:28 EZZ7949I Dijkstra calculation performed, on 1 IPv4 area(s)

 05/24 17:49:28 EZZ7935I New MPROUTE route to destination Net 10.0.0.4, type Dir cost 1

 05/24 17:49:28 EZZ7806I Changing stack route to 10.0.1.0, Mask 255.255.255.0 via 0.0.0.0, link M0TOGLAN1, metric 1, type 1

 05/24 17:49:28 EZZ7935I New MPROUTE route to destination Net 10.0.1.0, type SPF cost 1

 05/24 17:49:32 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:32 EZZ8015I sending packet to 224.0.0.9

 05/24 17:49:32 EZZ8021I sending RIP2 response to address 224.0.0.9 from 10.0.0.1 in 1 packets with 3 routes

�7� 05/24 17:49:34 EZZ7908I Received packet type 1 from 10.0.0.6

 05/24 17:49:34 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

�8� 05/24 17:49:34 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 4, event 1

�9� 05/24 17:49:34 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 8, event 3

 05/24 17:49:34 EZZ7934I Originating LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

�10�05/24 17:49:34 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 16, event 14

�11�05/24 17:49:34 EZZ7910I Sending multicast, type 2, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:34 EZZ7949I Dijkstra calculation performed, on 1 IPv4 area(s)

 05/24 17:49:34 EZZ7827I Adding stack route to 10.0.0.6, Mask 255.255.255.255 via 0.0.0.0, link M0TOM3, metric 1, type 129

 05/24 17:49:34 EZZ7935I New MPROUTE route to destination Net 10.0.0.6, type SPF cost 1

�12�05/24 17:49:34 EZZ7908I Received packet type 2 from 10.0.0.6

�13�05/24 17:49:34 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 32, event 5

 05/24 17:49:34 EZZ7910I Sending multicast, type 2, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:34 EZZ7908I Received packet type 2 from 10.0.0.6

�14�05/24 17:49:34 EZZ7910I Sending multicast, type 3, destination 224.0.0.5 net 3 interface M0TOM3

Diagnosing MPRoute Problems

186 z/VM: TCP/IP Diagnosis Guide

�15�05/24 17:49:34 EZZ7908I Received packet type 4 from 10.0.0.6

�16�05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

 05/24 17:49:34 EZZ7927I from 10.0.0.6, self update: typ 1 id 10.0.0.5 org

 05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 1 id 10.0.0.17 org 10.0.0.17

 05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 1 id 10.0.0.18 org 10.0.0.18

 05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 1 id 10.0.0.22 org 10.0.0.22

 05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 2 id 10.0.2.1 org 10.0.0.22

 05/24 17:49:34 EZZ7934I Originating LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

�17�05/24 17:49:34 EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 3 interface M0TOM3

�18�05/24 17:49:34 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 128, event 6

 05/24 17:49:34 EZZ7910I Sending multicast, type 2, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:34 EZZ7908I Received packet type 4 from 10.0.0.6

 05/24 17:49:34 EZZ7928I from 10.0.0.6, new LS advertisement: typ 1 id 10.0.0.18 org 10.0.0.18

�19�05/24 17:49:35 EZZ7908I Received packet type 5 from 10.0.0.6

�20�05/24 17:49:35 EZZ7910I Sending multicast, type 5, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:35 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1 interface M0TOGLAN1

�21�05/24 17:49:35 EZZ7949I Dijkstra calculation performed, on 1 IPv4 area(s)

 05/24 17:49:39 EZZ7934I Originating LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

 05/24 17:49:39 EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:39 EZZ8015I sending packet to 224.0.0.9

 05/24 17:49:39 EZZ8021I sending RIP2 response to address 224.0.0.9 from 10.0.0.1 in 1 packets with 3 routes

 05/24 17:49:40 EZZ7908I Received packet type 5 from 10.0.0.6

 05/24 17:49:40 EZZ7949I Dijkstra calculation performed, on 1 IPv4 area(s)

�22�05/24 17:49:40 EZZ7827I Adding stack route to 10.0.0.18, Mask 255.255.255.255 via 10.0.0.6, link M0TOM3, metric 3, type 129

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.0.18, type SPF cost 3

 05/24 17:49:40 EZZ7827I Adding stack route to 10.0.0.22, Mask 255.255.255.255 via 10.0.0.6, link M0TOM3, metric 3, type 129

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.0.22, type SPF cost 3

 05/24 17:49:40 EZZ7827I Adding stack route to 10.0.0.17, Mask 255.255.255.255 via 10.0.0.6, link M0TOM3, metric 2, type 129

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.0.17, type SPF cost 2

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.0.5, type SPF cost 2

 05/24 17:49:40 EZZ7827I Adding stack route to 10.0.0.21, Mask 255.255.255.255 via 10.0.0.6, link M0TOM3, metric 3, type 129

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.0.21, type SPF cost 3

 05/24 17:49:40 EZZ7827I Adding stack route to 10.0.2.0, Mask 255.255.255.0 via 10.0.0.6, link M0TOM3, metric 2, type 130

 05/24 17:49:40 EZZ7935I New MPROUTE route to destination Net 10.0.2.0, type SPF cost 2

 05/24 17:49:42 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:42 EZZ7934I Originating LS advertisement: typ 5 id 10.0.0.2 org 10.0.0.5

 05/24 17:49:42 EZZ7934I Originating LS advertisement: typ 5 id 10.0.3.0 org 10.0.0.5

 05/24 17:49:42 EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 3 interface M0TOM3

 05/24 17:49:43 EZZ7908I Received packet type 5 from 10.0.0.6

 05/24 17:49:44 EZZ7908I Received packet type 1 from 10.0.0.6

�23�05/24 17:49:44 DTCMPR7895I Processing SMSG command from TCPMNTM0 - OSPF LIST INTERFACES

 05/24 17:49:44 EZZ7895I Processing console command - OSPF,LIST,INTERFACES

 05/24 17:49:44 EZZ7809I EZZ7833I INTERFACE CONFIGURATION

 05/24 17:49:44 EZZ7809I IP ADDRESS AREA COST RTRNS TRDLY PRI HELLO DEAD DB_EX

 05/24 17:49:44 EZZ7809I 10.0.0.5 1.1.1.1 1 5 1 1 10 40 40

 05/24 17:49:44 EZZ7809I 10.0.1.1 1.1.1.1 1 5 1 1 10 40 40

 05/24 17:49:44 EZZ7809I

 05/24 17:49:44 EZZ7809I Demand circuit parameters

 05/24 17:49:44 EZZ7809I IP address DoNotAge Hello Suppression Poll Interval

 05/24 17:49:44 EZZ7809I 10.0.0.5 Off Allow 60

 05/24 17:49:44 EZZ7809I 10.0.1.1 Off N/A N/A

 05/24 17:49:45 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1 interface M0TOGLAN1

�24�05/24 17:49:48 DTCMPR7895I Processing SMSG command from TCPMNTM0 - TRACE=2

 05/24 17:49:48 EZZ7895I Processing console command - TRACE=2

 05/24 17:49:52 DTCMPR7895I Processing SMSG command from TCPMNTM0 - TRACE6=2

�25�05/24 17:49:52 EZZ7895I Processing console command - TRACE6=2

 05/24 17:49:52 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

�26�05/24 17:49:52 EZZ7876I -- OSPF Packet Sent ------ Type: Hello

 05/24 17:49:52 EZZ7878I OSPF Version: 2 Packet Length: 48

 05/24 17:49:52 EZZ7878I Router ID: 10.0.0.5 Area: 1.1.1.1

 05/24 17:49:52 EZZ7878I Checksum: e585 Auth Type: 0

 05/24 17:49:52 EZZ7878I Hello_Interval: 10 Network mask: 255.255.255.252

 05/24 17:49:52 EZZ7878I Options: E

 05/24 17:49:52 EZZ7878I Router_Priority: 1 Dead_Router_Interval: 40

 05/24 17:49:52 EZZ7878I Backup DR: 0.0.0.0 Designated Router: 0.0.0.0

 05/24 17:49:52 EZZ7878I Neighbor: 10.0.0.18

�27�05/24 17:49:52 -- RIP Packet Received -- Type: Response (V2)

 05/24 17:49:52 Destination_Addr: 10.0.3.0 metric: 1

 05/24 17:49:52 Subnet Mask: 255.255.255.0 Next Hop: 0.0.0.0

 05/24 17:49:52 Destination_Addr: 10.0.0.4 metric: 16

 05/24 17:49:52 Subnet Mask: 255.255.255.252 Next Hop: 10.0.0.1

 05/24 17:49:52 Destination_Addr: 10.0.1.0 metric: 16

 05/24 17:49:52 Subnet Mask: 255.255.255.0 Next Hop: 10.0.0.1

 05/24 17:49:52 EZZ8004I response received from host 10.0.0.2

 05/24 17:49:54 EZZ7877I -- OSPF Packet Received -- Type: Hello

 05/24 17:49:54 EZZ7878I OSPF Version: 2 Packet Length: 48

 05/24 17:49:54 EZZ7878I Router ID: 10.0.0.18 Area: 1.1.1.1

 05/24 17:49:54 EZZ7878I Checksum: e585 Auth Type: 0

Diagnosing MPRoute Problems

Chapter 14. Diagnosing MPRoute Problems 187

05/24 17:49:54 EZZ7878I Hello_Interval: 10 Network mask: 255.255.255.252

 05/24 17:49:54 EZZ7878I Options: E

 05/24 17:49:54 EZZ7878I Router_Priority: 1 Dead_Router_Interval: 40

 05/24 17:49:54 EZZ7878I Backup DR: 0.0.0.0 Designated Router: 0.0.0.0

 05/24 17:49:54 EZZ7878I Neighbor: 10.0.0.5

 05/24 17:49:54 EZZ7908I Received packet type 1 from 10.0.0.6

�28�05/24 17:49:56 DTCMPR7895I Processing SMSG command from TCPMNTM0 - TRACE=1

 05/24 17:49:56 EZZ7895I Processing console command - TRACE=1

 05/24 17:49:57 EZZ8062I Subnet 10.0.0.0 defined

 05/24 17:50:02 EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 3 interface M0TOM3

 .

 .

 .

�29�05/24 17:50:11 EZZ7862I Received update interface M0TOM3

�30�05/24 17:50:11 EZZ8061I Deleted net 10.0.0.4 route via 10.0.0.5 net 3 interface M0TOM3

 05/24 17:50:11 EZZ7864I Deleting all stack routes to 10.0.0.4, Mask 255.255.255.252

�31�05/24 17:50:11 EZZ7919I State change, IPv4 OSPF neighbor 10.0.0.6, new state 1, event 11

 EZZ7921I OSPF adjacency failure, neighbor 10.0.0.6, old state 128, new state 1, event 11

 05/24 17:50:11 EZZ7879I Leaving multicast group 224.0.0.5 on interface 10.0.0.5

�32�05/24 17:50:11 EZZ7913I State change, interface 10.0.0.5, new state 1, event 7

 05/24 17:50:11 EZZ7934I Originating LS advertisement: typ 1 id 10.0.0.5 org 10.0.0.5

 05/24 17:50:12 EZZ7949I Dijkstra calculation performed, on 1 IPv4 area(s)

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.6 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.0.6, Mask 255.255.255.255

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.18 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.0.18, Mask 255.255.255.255

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.22 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.0.22, Mask 255.255.255.255

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.17 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.0.17, Mask 255.255.255.255

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.5 now unreachable

 05/24 17:50:12 EZZ7943I Destination Net 10.0.0.21 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.0.21, Mask 255.255.255.255

 05/24 17:50:12 EZZ7943I Destination Net 10.0.2.0 now unreachable

 05/24 17:50:12 EZZ7864I Deleting all stack routes to 10.0.2.0, Mask 255.255.255.0

The explanations are:

 1. MPRoute initializing (trace level 1 was specified at startup).

 2. MPROUTE learns of TCP/IP stack IPv4 interfaces.

 3. Direct routes are added for each TCP/IP stack IPv4 interface.

 4. OSPF Hello packet sent out OSPF interface.

 5. OSPF interface transitions to state “point-to-point.”

 6. RIP requests and responses begin being sent out on the RIP interface.

 7. OSPF Hello packet received from OSPF neighbor.

 8. OSPF neighbor transitions to state “Init.”

 9. OSPF neighbor transitions to state “2-Way.”

10. OSPF neighbor transitions to state “ExStart.”

11. OSPF Database Description packet sent out on the OSPF interface.

12. OSPF Database Description received from an OSPF neighbor.

13. OSPF neighbor transitions to state “Exchange.”

14. OSPF Link State Request packet sent out on the OSPF interface.

15. OSPF Link State Update packet received from an OSPF neighbor.

16. Link State Advertisements from received Update packet are processed.

17. OSPF Link State Update packet sent out on the OSPF interface.

18. OSPF neighbor transitions to state “Full.”

19. OSPF Link State Acknowledgment packet received from OSPF neighbor.

20. OSPF Link State Acknowledgment packet sent out on the OSPF interface.

21. OSPF Dijkstra calculation is performed.

22. Learned route is added to TCP/IP stack IPv4 route table.

23. Request received to display OSPF Interface configuration information.

24. Request received to change IPv4 tracing level to 2 (adds formatted packets).

Diagnosing MPRoute Problems

188 z/VM: TCP/IP Diagnosis Guide

25. Request received to change IPv6 tracing level to 2 (adds formatted packets).

26. Formatted OSPF packet.

27. Formatted RIP packet.

28. Request received to change tracing level back to 1.

29. MPROUTE learns of stopped TCP/IP IPv4 interface.

30. Routes over stopped interface are deleted.

31. Neighbor over stopped interface transitions to state “Down.”

32. Stopped interface transitions to state “Down.”

The following is a sample MPRoute initialization and IPv6 routing protocol trace.

Numbers in reverse type match the explanations that follow the sample.

�1� EZZ7977I Processing IPv6 interface from stack, address e1:4::4:0, name M0TOGLAN4, index 2, flags 1, flags2 0

 EZZ7977I Processing IPv6 interface from stack, address fe80::209:5700:100:26, name M0TOGLAN4, index 2, flags 1, flags2 2

 EZZ7882I Processing static route from stack, destination e1:4::, prefixlen 64, gateway ::

 05/24 18:35:23 EZZ8059I Added network e1:4:: with route via fe80::209:5700:100:26 on net 2 interface M0TOGLAN4

 EZZ7937I The IPv6 OSPF routing protocol is Disabled

�2� 05/24 18:35:23 EZZ8057I Added network e1:4::4:0 to interface fe80::209:5700:100:26 on net 2 interface M0TOGLAN4

 05/24 18:35:23 EZZ7879I Joining multicast group ff02::9 on interface M0TOGLAN4

 EZZ7875I No IPv6 default route installed

 EZZ7898I MPROUTE INITIALIZATION COMPLETE

 05/24 18:35:26 EZZ7863I Received add route to e1:4::

 EZZ7882I Processing static route from stack, destination e1:4::, prefixlen 64, gateway ::

�3� 05/24 18:35:26 EZZ8011I send request to address ff02::9

 05/24 18:35:26 EZZ8015I sending packet to ff02::9

�4� 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:22

 05/24 18:35:26 EZZ8010I update route to net e1:5:: at metric 2 hops via router fe80::209:5700:100:22

 05/24 18:35:26 EZZ7827I Adding stack route to e1:5::, prefixlen 64 via fe80::209:5700:100:22, link M0TOGLAN4, metric 2, type 1

 05/24 18:35:26 EZZ8015I sending packet to ff02::9

 05/24 18:35:26 EZZ8021I sending IPv6RIP response to address ff02::9 from fe80::209:5700:100:26 in 1 packets with 2 routes

 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:27

 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:20

 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:2c

 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:22

 05/24 18:35:26 EZZ8004I response received from host fe80::209:5700:100:20

 05/24 18:35:28 EZZ8015I sending packet to ff02::9

 05/24 18:35:28 EZZ8021I sending IPv6RIP response to address ff02::9 from fe80::209:5700:100:26 in 1 packets with 2 routes

 05/24 18:35:29 EZZ8015I sending packet to ff02::9

 05/24 18:35:29 EZZ8021I sending IPv6RIP response to address ff02::9 from fe80::209:5700:100:26 in 1 packets with 2 routes

 05/24 18:35:31 EZZ8004I response received from host fe80::209:5700:100:27

 05/24 18:35:31 EZZ8010I update route to net e1:6:: at metric 2 hops via router fe80::209:5700:100:27

 05/24 18:35:31 EZZ7827I Adding stack route to e1:6::, prefixlen 64 via fe80::209:5700:100:27, link M0TOGLAN4, metric 2, type 1

 05/24 18:35:31 EZZ8010I update route to net e1:8:: at metric 2 hops via router fe80::209:5700:100:27

 05/24 18:35:31 EZZ7827I Adding stack route to e1:8::, prefixlen 64 via fe80::209:5700:100:27, link M0TOGLAN4, metric 2, type 1

 05/24 18:35:32 EZZ8004I response received from host fe80::209:5700:100:2c

 05/24 18:35:33 EZZ8015I sending packet to ff02::9

 05/24 18:35:33 EZZ8021I sending IPv6RIP response to address ff02::9 from fe80::209:5700:100:26 in 1 packets with 4 routes

 05/24 18:35:56 EZZ8004I response received from host fe80::209:5700:100:22

 05/24 18:35:56 EZZ8004I response received from host fe80::209:5700:100:20

 05/24 18:35:59 EZZ8015I sending packet to ff02::9

 05/24 18:35:59 EZZ8021I sending IPv6RIP response to address ff02::9 from fe80::209:5700:100:26 in 1 packets with 4 routes

 05/24 18:36:01 EZZ8004I response received from host fe80::209:5700:100:27

 05/24 18:36:02 EZZ8004I response received from host fe80::209:5700:100:2c

 05/24 18:36:04 EZZ7863I Received add route to e1:4::

 EZZ7882I Processing static route from stack, destination e1:4::, prefixlen 64, gateway ::

�5� 05/24 18:36:25 DTCMPR7895I Processing SMSG command from TCPMNTM0 - TRACE6=2

�6� 05/24 18:36:26 -- IPv6 RIP Packet Received (M0TOGLAN4) -- Type: Response

 05/24 18:36:26 Destination_Addr: e1:5::

 05/24 18:36:26 Prefix Length: 64 metric: 1

 05/24 18:36:26 Destination_Addr: e1:5::5:6

 05/24 18:36:26 Prefix Length: 128 metric: 1

 05/24 18:36:26 Destination_Addr: e1:4::4:6

 05/24 18:36:26 Prefix Length: 128 metric: 1

 05/24 18:36:26 Destination_Addr: e1:6::

 05/24 18:36:26 Prefix Length: 64 metric: 16

 05/24 18:36:26 Destination_Addr: e1:8::

 05/24 18:36:26 Prefix Length: 64 metric: 16

 05/24 18:36:26 EZZ8004I response received from host fe80::209:5700:100:22

The explanations are:

Diagnosing MPRoute Problems

Chapter 14. Diagnosing MPRoute Problems 189

1. MPROUTE learns of TCP/IP stack IPv6 interface addresses. Note that each

home address on an IPv6 interface is described separately; MPROUTE uses

the interface name to assign addresses to a specific interface.

2. Direct routes are added for each non-link-local TCP/IP stack IPv6 home

address. When an interface’s home address is needed in a message, its

link-local address is used.

3. IPv6 RIP requests and responses begin being sent out IPv6 RIP interface. Note

the use of link-local address when the interface is being identified by address

only.

4. IPv6 RIP Response received and associated routes added to IPv6 route table.

Note that the source address is always link-local.

5. Request received to change IPv6 tracing level to 2 (adds formatted packets).

The operator command to set the tracing level appears in the IPv4 trace,

because modify commands run on the IPv4 thread.

6. Formatted IPv6 RIP packet.

Diagnosing MPRoute Problems

190 z/VM: TCP/IP Diagnosis Guide

Chapter 15. SSL Server Diagnosis

This chapter describes some of the debugging facilities for the Secure Socket Layer

(SSL) server. SSL trace facilities exist that can be useful in identifying the cause of

SSL server problems. This section discusses these trace requests and how they

can be started and stopped. Included are descriptions of traces as well as

examples of how these traces are invoked.

The Secure Socket Layer (SSL) server provides the processing that allows secure

(encrypted) communication between a remote client and a VM TCP/IP server (in

this context known as the application server). The application server must be

listening on a port identified as secure by the installation, and the remote client

must support the SSL protocol. Transport Layer Security (TLS) is the Internet

Standards protocol based on SSL and is described in RFC 2246.

Figure 93 expresses the viewpoint of the client and the server that there is a

connection between them.

The reality is that the client has a connection with the SSL server and the SSL

server has a connection with the server as illustrated in Figure 94 on page 192:

Server

Socket

Socket

Security Server

Client

Stack

Figure 93. SSL Client and Server Environment

© Copyright IBM Corp. 1987, 2005 191

SSL component Flow

The following diagram illustrates how the SSL server and stack work together to

provide SSL processing on behalf of a secure server:

An SSL session consists of the following general processing steps:

�1�Connect

The SSL session is maintained as two separate connections: the connection from

the remote client to the SSL server, and the connection from the SSL server to the

Server

Socket Socket Socket

Socket

Security Server

Client

Stack

Figure 94. TCP/IP Stack View of connection

Client Security Server Secure Server

1

2

3

4

Connect
(secure port)

Accept
Connect

Accept
Client Hello

Server Hello
Certificate
Hello Done

Key Exchange
Change Cipher Spec
Finished

Change Cipher Spec
Finished

Send
Send

Send
Send

Close
Close

Close
Close

encrypted data
decrypted data

unencrypted data
encrypted data

Figure 95. SSL processing flow

SSL Diagnosis

192 z/VM: TCP/IP Diagnosis Guide

application server. The intervention of the SSL server is transparent to the client

and the application server; to them, it seems that they are communicating directly

with each other.

�2�Client Hello

After its connect request is accepted, the client initiates a handshake protocol to

produce the cryptographic parameters for the session. The SSL server

(representing the application server) responds to the handshake and sends the

application server’s certificate to the client. The client and the SSL server agree on

a protocol version, select cryptographic algorithms (known as cipher suites), and

use asymmetric (public-key) encryption techniques to generate shared secrets.

From the shared secrets, the SSL server and the client generate the symmetric

(private) keys to be used for the encryption and decryption of data sent on the

connection.

�3�Send

When the handshake completes, the client sends encrypted data over the network.

The SSL server receives the encrypted data from the client, decrypts it, and sends

it to the application server. The application server responds by sending unencrypted

data to the SSL server. The SSL server receives the unencrypted data from the

application server, encrypts it, and sends it to the client.

�4�Close

When a close is received from either the client or the application server, the SSL

server sends a close to the other party and cleans up the connection.

Invoking Trace Activity on the SSL Server

The type of activity that can be traced on the SSL Server consists of the following:

v TRACE NORMAL

v TRACE CONNECTIONS

v TRACE FLOW

Note: Traces can be refined and limited by specifying the connection number, IP

address or port.

There are two methods for initiating trace facilities. One is to begin tracing SSL

server activities when the server starts, the other is to start or stop trace activity

after the server has been initialized and is running.

To begin tracing SSL server activities when the server starts, you need to use the

TRACE operand on the VMSSL command. This command can be entered either at

the console upon start up, or, can be invoked upon start up by specifying the

TRACE parameter in the DTCPARMS file.

When the SSL server is started, the initialization program searches the DTCPARMS

files for configuration definitions that apply to this server. Tags that affect the SSL

server are:

 :nick.SSLSERV :type.server :class.ssl

 :nick.ssl :type.class

SSL Diagnosis

Chapter 15. SSL Server Diagnosis 193

:name.SSL daemon

 :command.VMSSL

 :diskwarn.YES

 :parms.maxusers 50 TRACE

If the SSL entry in the DTCPARMS is unaltered, then default operands for the

command are used. If you want to override the default VMSSL command operands,

you should modify the DTCPARMS file for the SSL server and specify the operands

you want on the :parms tag.

The format of the VMSSL and SSLADMIN commands along with the debug trace

operands are described below:

VMSSL Command

SSLADMIN TRACE/NOTRACE Command

 As mentioned earlier, the alternate method of starting and stopping trace activity on

the SSL server is with the SSLADMIN command. Use the SSLADMIN

TRACE/NOTRACE command to dynamically start or stop tracing SSL server

activities while the server is running.

Operands:

TRACE

specifies that tracing is to be performed.

NORMAL

specifies that a trace entry is recorded to indicate a successful connection. This

is the default if TRACE is specified.

��

VMSSL
 NOTRACE

NORMAL

ALL

TRACE

NODATA

ip_address

CONNECTIONS

:port

DATA

ip_address:port

FLOW

��

��

SSLadmin
 NORMal ALL

TRACE

NODATA

ip_address

CONNections

:port

DATA

ip_address:port

FLOW

connection_number

NOTRACE

��

SSL Diagnosis

194 z/VM: TCP/IP Diagnosis Guide

CONNECTIONS

specifies that a trace entry is recorded for connection state changes and

handshake results.

NODATA

specifies that no data is displayed for send and receive trace entries. This is the

default if CONNECTIONS is specified.

DATA

specifies that the first 20 bytes of data are displayed for send and receive trace

entries.

FLOW

specifies that flow of control and system activity are traced.

ALL

specifies that tracing is done for all connections. This is the default if TRACE is

specified.

ip_address

specifies that tracing is done only for activity associated with this IP address.

port

specifies that tracing is done only for activity associated with this port.

connection_number

specifies that tracing is done only for activity associated with this connection

number. The connection number can be obtained by issuing NETSTAT CONN.

This operand is supported only on SSLADMIN.

NOTRACE

specifies that all tracing is turned off. This is the default on VMSSL.

Diagnosing Problems

The following provides information about problems that you might encounter with

the SSL server and suggestions for diagnosing the problem.

Symptom - The SSL server could not be started

Documentation

The following documentation should be available for initial diagnosis:

v TCPIP DATA information

v Messages from the SSL server console

v DTCPARMS information

v Trace output

Analysis

If the server could not connect to the TCP/IP virtual machine:

1. Verify that the TCP/IP server ID specified in the start up message DTCSSL080I

has the correct user ID for your stack. If not, correct the TCPIPUSERID entry in

TCPIP DATA.

2. Verify that the TCP/IP server is started.

3. Check the messages from the TCP/IP server console for indications of

problems. Refer to z/VM: TCP/IP Messages and Codes and follow the directions

for the system programmer response for the particular message.

SSL Diagnosis

Chapter 15. SSL Server Diagnosis 195

4. Use Trace Normal or Trace Flow to gather further debug information. Update

the parms tag in DTCPARMS for the SSL server with Trace Normal or Trace

Flow and start the server. This will provide debug information during the server

start up.

Symptom - The SSL server is restarted by the stack at regular

intervals

The most common cause of this condition is that the server is in the AUTOLOG list

and also has a PORT statement reserving a TCP port but does not have a listening

connection.

Documentation

The following documentation should be available for initial diagnosis:

v PROFILE TCPIP

v ETC SERVICES

v SSL trace output from the TCP/IP server

Analysis

1. Verify that the port number for the SSL server in PROFILE TCPIP matches the

port number for SSLADMIN in the ETC SERVICES file. The SSL server gets the

port number from ETC SERVICES and the stack monitors the port listed in

PROFILE TCPIP.

2. Trace the SSL process in the TCP/IP server to determine if there were errors on

socket calls from the SSL server.

3. Determine if the SSLADMIN port in the ETC SERVICES was or was not passed

to the SSL server. See which VMSSL parms do not get applied from the

DTCPARMS file.

Symptom - The correct parameters are not being passed to the SSL

server

Documentation

The following documentation should be available for initial diagnosis:

v SSLADMIN QUERY STATUS output

v DTCPARMS information

v Messages from the SSL server console

Analysis

1. Issue SSLADMIN QUERY STATUS to determine what options are in effect.

2. Check that the parameters are correctly specified on the parms tag of the

DTCPARMS for the SSL server entry.

3. Check the VMSSL start up message DTCSSL080I for a list of the DTCPARMS

arguments used at start up time.

4. Check for other messages from the SSL server console giving information about

the parameters.

Symptom - The inability to connect to an application server listening

on a secure port

Documentation

The following documentation should be available for initial diagnosis:

v NETSTAT CONNECTIONS output

v SSLADMIN QUERY SESSIONS output

SSL Diagnosis

196 z/VM: TCP/IP Diagnosis Guide

v Messages from the SSL server console

v Trace output from the SSL server

v Trace output from the TCP/IP server

Analysis

1. Issue NETSTAT CONNECTIONS to verify that both the application server and

the SSL server are listening. Start the servers if necessary.

2. Issue SSLADMIN QUERY STATUS to determine the number of active sessions

and the maximum number of sessions allowed.

When the maximum is reached, the TCP/IP server rejects any further

connections for the SSL server until the number of active sessions is less than

the maximum. The number of maximum sessions can be specified with

MAXUSERS on the DTCPARMS parms tag for the SSL server.

3. Check the messages from the SSL server console for indications of problems.

4. Issue SSLADMIN TRACE CONNECTION and try the connection again.

5. Trace the SSL process and the TCPUP process in the TCP/IP server in order to

gather more debug information.

Symptom - Connections close due to errors

Documentation

The following documentation should be available for initial diagnosis:

v TCPIP PROFILE

v SSLADMIN QUERY CERTIFICATE * output

v Messages from the SSL server console

v Trace output from the SSL server

Analysis

1. Verify that the label specified on the PORT statement is correct and issue

SSLADMIN QUERY CERT label to ensure that it exists in the certificate

database. Note that the SSL server must be restarted to activate new

certificates.

2. Check the messages from the SSL server console for indications of problems.

3. Issue SSLADMIN TRACE CONNECTIONS and try the connection again.

Trace connections will display messages that will indicate what happened to the

connections it receives. You may want to consider limiting the trace to an ip

address or port.

Symptom - Incorrect input or output

Documentation

The following documentation should be available for initial diagnosis:

v SSLADMIN QUERY SESSIONS

v Messages from the SSL server console

v Trace connections data output from the SSL server

Analysis

1. Verify that your connection has been established.

2. Verify that the data is flowing correctly through the SSL server.

3. Check the messages from the SSL server for indications of problems.

4. Issue SSLADMIN TRACE CONNECTIONS DATA and try the connection again.

SSL Diagnosis

Chapter 15. SSL Server Diagnosis 197

Trace Connections Data will display messages that will indicate what might have

happened with the connections it receives and their data. You may want to

consider limiting the trace to an ip address or port.

Trace Output

The following trace examples show output received from an SSL server when

tracing normal, connections, data, and flow specified on the SSLADMIN

command. It may be beneficial to refer to the processing flow in Figure 95 on page

192, when studying the following trace examples.

Trace Normal

Administrative Console

ssladmin trace

DTCSSL047I Trace established

Ready; T=0.03/0.03 13:35:39

SSL Server Console

DTCSSL003I SSLADMIN received: TRACE NORMAL ALL

DTCSSL047I Trace established

�1�

Client 9.130.57.56:1159 Port 9997 Label SNIFCERT

 Cipher RC4_128_MD5 Connection established

Explanation

�1� This is the client that has connected to the SSL server. It includes its IP

address and port as well as the server’s port. Label is the name of the

certificate used and Cipher is the name of the Cipher Suite. This entry gets

displayed after the handshake.

Trace Connections NODATA

Administrative Console

ssladmin trace connections

DTCSSL047I Trace established

Ready; T=0.03/0.03 13:36:07

SSL Server Console

DTCSSL003I SSLADMIN received: TRACE CONNECTIONS NODATA ALL

DTCSSL047I Trace established

 �1�

DTCSSL019I Connection received from

Thread Client_Socket_Address Connection Label

 1 9.130.57.56:1174

 1006 SNIFCERT

 �2�

DTCSSL020I Connection accepted by

 Thread Server_Socket_Address

 1 9.130.249.34:9997

 �3�

DTCSSL021I Handshake successful

Thread Client_Socket_Address Server_Socket_Address Connection Cipher

 1 9.130.57.56:1174 9.130.249.34:9997 1006 RC4_128_MD5

 �4�

DTCSSL023I Connection closed

Thread Client_Socket_Address Server_Socket_Address Connection

 1 9.130.57.56:1174 9.130.249.34:9997 1006

SSL Diagnosis

198 z/VM: TCP/IP Diagnosis Guide

Explanation

�1� Displays the Thread number and Connection number. This event occurs

after the client has been accepted.

�2� Displays the Application server IP address and Port number, together with

the thread number. This event occurs after the SSL server has connected to

the application server.

�3� After the Handshake completes, either a status of handshake successful or

handshake unsuccessful is displayed. The agreed upon Cipher Suite is

displayed as well.

�4� Upon the closing of connections, Connection closed for this particular

client-server connection is indicated.

Trace Connections DATA

Administrative Console

ssladmin trace connections data

DTCSSL047I Trace established

Ready; T=0.03/0.03 13:36:38

SSL Server Console

�1�

DTCSSL003I SSLADMIN received: TRACE CONNECTIONS DATA ALL

DTCSSL047I Trace established

DTCSSL019I Connection received from

Thread Client_Socket_Address Connection Label

 2 9.130.57.56:1175 1015 SNIFCERT

DTCSSL020I Connection accepted by

Thread Server_Socket_Address

 2 9.130.249.34:9997

DTCSSL021I Handshake successful

Thread Client_Socket_Address Server_Socket_Address Connection Cipher

 2 9.130.57.56:1175 9.130.249.34:9997 1015 RC4_128_MD5

DTCSSL025I Data received

Thread Client_Socket_Address Server_Socket_Address Connection Bytes

 2 9.130.57.56:1175 9.130.249.34:9997 1015 388

Data: GET /devpages/roden/

DTCSSL024I Data sent

Thread Client_Socket_Address Server_Socket_Address Connection Bytes

 2 9.130.57.56:1175 9.130.249.34:9997 1015 136

Data: HTTP/1.0 304 Not Mod

DTCSSL023I Connection closed

Thread Client_Socket_Address Server_Socket_Address Connection

 2 9.130.57.56:1175 9.130.249.34:9997 1015

Explanation

�1� Same as Trace Connections NODATA with Data Byte count along with the

first 20 bytes of data in clear text. Also shown is the direction in which data

flows. Data Received is data received from the client and sent to the server.

Data Sent is data sent to the client after coming from the server. Bytes

represents the data count and is a count of the unencrypted bytes.

Trace FLOW

Administrative Console

DTCSSL003I SSLADMIN received: TRACE FLOW ALL

DTCSSL047I Trace established

Ready; T=0.03/0.03 13:36:39

SSL Diagnosis

Chapter 15. SSL Server Diagnosis 199

SSL Server Console

13:37:07 Admin updateThread() ended

13:37:07 SSL updateThread() ended

13:37:07 0 updateThread() ended

13:37:07 1 updateThread() ended

13:37:07 2 updateThread() ended

13:37:07 Admin updateThreads() ended

13:37:07 Admin handleAdmin(handleTrace) Done t:0

13:37:07 Admin handleAdmin() ended rc: 0

13:37:07 Admin adminMain(close)Stop:0 rc2:0 errno:4 sock:7

�1�

13:37:13 SSL mainSSL(accept) NS: 7 errno: 4

�2�

13:37:13 SSL displaySockSSL() started

�3�

13:37:13 SSL displaySockSSL(mainSSL() after accept)

13:37:13 SSL fromIP: 9.130.57.56:1176 len:13:37:13 SSL

 toIP: 9.130.249.34:9997 fam: tcb:93976544 lab:SNIFCERT

�4�

13:37:13 SSL displaySockSSL() ended

13:37:13 SSL placeInToDoList() started

13:37:13 SSL placeInToDoList() ended

13:37:13 SSL setupToDo started

13:37:13 SSL setupToDo ended

13:37:13 SSL signalWorker() started

13:37:13 0 getFirstToDo() started

13:37:13 0 getFirstToDo() ended

13:37:13 0 updateThread() started ThB 4c94b0

13:37:13 0 updateThread() ended

13:37:13 0 workerThread(1): myToDo: 482560

13:37:13 0 workerThread(before gsk__open): client: 7

13:37:13 0 workerThread(gsk__open) rc: 0 envH: 4202a8 sslH: 7f5ffcc0

13:37:13 0 workerThread(GSK_OK) GSK_OK: 0

13:37:13 0 workerThread(gsk__set_n) client: 7 rc: 0

13:37:13 0 workerThread(gsk__set_b, label) rc: 0

13:37:13 0 workerThread(gsk__set_b, userData) rc: 0

13:37:13 0 workerThread(1) rc: 0: errno: 4

13:37:13 0 connectServer() started

13:37:13 SSL signalWorker() ended

13:37:13 SSL mainSSL(): newToDo: 42d1b8 pClientA: 42d1c4 cLen: 36

13:37:13 SSL displaySockSSL() started

13:37:13 0 connectServer() socket() s = 8: errno: 4

13:37:13 SSL displaySockSSL(mainSSL() before accept)

13:37:13 SSL fromIP: 0.0.0.0:0 len:13:37:13 0

 connectServer(setsockopt) rc: 0: errno: 4

13:37:13 0 displaySockSSL() started

13:37:13 0 displaySockSSL(mainSSL() before connect)

13:37:13 0 fromIP: 9.130.57.56:1176 len:13:37:13 0

 toIP: 9.130.249.34:9997

 fam: tcb:93976544 lab:SNIFCERT

13:37:13 0 displaySockSSL() ended

13:37:13 SSL toIP: 0.0.0.0:0 fam: tcb:0 lab:13:37:13

 SSL displaySockSSL() ended

13:37:13 SSL mainSSL before accept s:6 pC:42d1c4 cLen:36

13:37:13 0 connectServer(connect) rc = 0: errno: 4

13:37:13 0 displaySockSSL() started

13:37:13 0 displaySockSSL(mainSSL() after connect)

13:37:13 0 fromIP: 9.130.57.56:1176 len:13:37:13 0

 toIP: 9.130.249.34:9997

 fam: tcb:93976544 lab:SNIFCERT

13:37:13 0 displaySockSSL() ended

13:37:13 0 connectServer() ended s: 8

13:37:13 0 workerThread(rtn from connServer)

13:37:13 0 workerThread(before gsk_soc_init) sslHdl: 4bac18

SSL Diagnosis

200 z/VM: TCP/IP Diagnosis Guide

vmsslRead(recv) fd: 7 rc: 5 errno: 4

vmsslRead(recv) fd: 7 rc: 93 errno: 4

vmsslWrite(send) fd: 7 rc: 79 errno: 4

vmsslWrite(send) fd: 7 rc: 6 errno: 4

vmsslWrite(send) fd: 7 rc: 61 errno: 4

vmsslRead(recv) fd: 7 rc: 5 errno: 4

vmsslRead(recv) fd: 7 rc: 1 errno: 4

vmsslRead(recv) fd: 7 rc: 5 errno: 4

vmsslRead(recv) fd: 7 rc: 56 errno: 4

13:37:13 0 workerThread(gsk_soc_init) rc: 0

13:37:13 0 UpdateSSLKitMs() started

13:37:13 0 GetCipherType() started Cipher: 04

13:37:13 0 GetCipherType() ended CipherType: 0

13:37:13 0 UpdateSSLKitMs() ended RC: 0

13:37:13 0 workerThread(select) rc2: 1: errno: 4

13:37:13 0 workerThread() client: 7 server: 8

13:37:13 0 clientSocket input

13:37:13 0 clientToServer() started client: 7 server: 8

vmsslRead(recv) fd: 7 rc: 5 errno: 4

vmsslRead(recv) fd: 7 rc: 404 errno: 4

13:37:13 0 clientToServer(recv1) rc: 0 lenRd: 388

13:37:13 0 clientToServer(send) rc:388 errno:4 len:388

13:37:13 0 clientToServer() ended stopMe: 0

13:37:14 0 workerThread(select) rc2: 1: errno: 4

13:37:14 0 workerThread() client: 7 server: 8

13:37:14 0 serverSocket input

13:37:14 0 serverToClient() started

13:37:14 0 serverToClient(recv) rc: 136 errno: 4

vmsslWrite(send) fd: 7 rc: 157 errno: 4

13:37:14 0 serverToClient(send) rc: 0 lenWri: 136

13:37:14 0 serverToClient() ended stopMe: 0

13:37:14 0 workerThread(select) rc2: 1: errno: 4

13:37:14 0 workerThread() client: 7 server: 8

13:37:14 0 serverSocket input

13:37:14 0 serverToClient() started

13:37:14 0 serverToClient(recv) rc: 0 errno: 4

13:37:14 0 serverToClient() ended stopMe: 2

13:37:14 0 closeToDo() started pToDo: 482560

13:37:14 0 workerThread(): client socket: 7 closed rc: 0

13:37:14 0 workerThread(): server socket: 8 closed rc: 0

13:37:14 0 closeToDo() ended

13:37:14 0 updateThread() started ThB 4c94b0

13:37:14 0 updateThread() ended

13:37:14 0 workerThread(gsk to soc_close) sslH: 7f5ffcc0

13:37:14 0 workerThread(): GSK client socket closed rc: 0

13:37:14 0 getFirstToDo() started

13:37:14 0 getFirstToDo() ended

13:37:14 0 workerThread(0): myToDo: 0

13:37:14 0 workerThread(): locking myToDo: 0

Explanation

The following can be used as a general guideline when interpreting Trace Flow

output:

v The first word is a time stamp in hh:mm:ss format

v The second word is the thread ID specifying one of the following:

Admin Administrative thread

SSL The main SSL Thread

Number The Worker thread

v The third word is the routine that is running. Parenthesis may contain unique

information that can be used as a reference point. The rest of the entry contains

other relevant data.

SSL Diagnosis

Chapter 15. SSL Server Diagnosis 201

�1� Shows an SSL thread with routine name of mainSSL running during accept

processing. Also indicates NS (new socket) number and errno: 4. Errno is

only valid if NS is negative.

�2� Indicates displaySocketSSL routine has started. Note that any subsequent

routine that is called is displayed with a two space indentation. Upon

completion of the routine, the indentation in the entry is removed.

�3� Displays relevant data.

�4� Indicates ″end of routine″.

Displaying Local Host Information

There are times when it may be helpful to use the the NETSTAT command to

display information about active TCP/IP host connections. Below is an example of

output displayed upon invoking the NETSTAT command.

netstat conn

VM TCP/IP Netstat level 520

Active Transmission Blocks

User Id Conn Local Socket Foreign Socket State

---- -- ---- ----- ------ ------- ------ -----

INTCLIEN 1000 *..TELNET *..* Listen

INTCLIEN 1006 *..423 *..* Listen

�1�

INTCLIEN 1001 GDLVMK1-4..423 9.130.58.177..1208 Established

ROUTED4 UDP *..520 *..* UDP

SSLSERV 1002 127.0.0.0..9999 *..* Listen

SSLSERV 1004 *..1024 *..* Listen

�2�

SSLSERV 1003 GDLVMK1-4..1024 9.130.58.177..1208 Established

 1005

�3�

SSLSERV 1005 GDLVMK1-4..1025 GDLVMK1-4..423 Established

 1003

Ready; T=0.02/0.04 19:57:41

Explanation

�1� This line shows the connection from the telnet server to the real client. Both

the client and application server share this view.

�2� The lines represented by �2� and �3�, respectively, show the further

breakdown of the primary connection into two connections: the line

represented by �2� being the connection from the SSL server to the real

client, and the line represented by �3� as being the connection from the

SSL server to the application server.

SSL Diagnosis

202 z/VM: TCP/IP Diagnosis Guide

Chapter 16. Network File System

This chapter describes debugging facilities for NFS. Included are descriptions of

traces as well as the different procedures implemented for TCP/IP VM.

VM NFS Client Support

Activating Traces for NFS Client

Debugging the NFS client is activated by the OPENVM DEBUG command. For

more information on the OPENVM DEBUG command, see the z/VM:

OpenExtensions Commands Reference.

VM NFS Server Support

NFS Protocol

The VM NFS server supports NFS protocol, program 100003, at the Version 2 and

Version 3 levels. These are described by RFCs 1094 and 1813.

Mount Protocol

The VM NFS server supports MOUNT protocol, program 100005, at the Version 1

and Version 3 levels. These are also described by RFCs 1094 and 1813.

In addition to procedures 0-5 described in the RFCs, VM defines Mount protocol

procedure 6 for MOUNTPW.

PCNFSD Protocol

The VM NFS server supports PCNFS protocol, program 150001, at the Version 1

and Version 2 levels. Only procedures PCNFSD_NULL (0) and PCNFSD_AUTH

(Version 1 – 2, Version 2 – 13) are supported.

General NFS Debugging Features

NFS has several features for debugging. Here is a general list of some of the

debugging features.

1. Several levels of trace information are available. You can ask to write trace

information to the VM NFS server machine console. Use the M start up

parameter or the SMSG MASK command to set the mask and write trace

information to the server machine console. Several mask values result in

console information:

500 Displays information about processing to decode names,

particularly the name translation that takes place for SFS and

minidisk files when the names=trans option is used on mount.

501 Shows NFS requests (e.g., nfsread or lookup) received by the

VM NFS server, and the responses to those requests. This

shows the high level flow of requests between NFS client and

server.

502 Displays information related to mount requests, including

PCNFSD and translation table processing.

503 Displays information about initialization and SMSG REFRESH

CONFIG processing.

© Copyright IBM Corp. 1987, 2005 203

504 Displays error messages describing the errors received by the

VM NFS server when processing SFS and BFS files and

directories. These are the error codes given on routines such as

DMSOPEN for SFS files, and the open() function call for BFS

files.

505 Displays information related to internal tasks being dispatched.

506 Displays information related to NFS requests, but with more

details than the M 501 trace.

507 Causes the VM NFS server to call VMDUMP and write

information to the console for all SFS and BFS errors except

'file not found'. In addition to the 507 mask value, the VMNFS

DUMP_REQ file must contain the correct value. See note 6.

508 Displays information related to sockets used in the VM NFS

server.

509 Displays file I/O related information.

510 Displays buffers related to sockets used in the VM NFS server.

999 Includes all of the above except mask value 510.

The M parameter may be used multiple times on the start up command. For

example, you can specify the following in the DTCPARMS file:

 :parms.M 501 M 504

You may specify only one mask value at a time on a MASK command delivered

via CP SMSG, but the settings are cumulative. Specifying ’SMSG VMNFS M

MASK 0’ clears all previously set mask values.

2. VMNFS maintains information and usage data about client mounts. You can see

this information using the SMSG VMNFS M QUERY command. 'SMSG VMNFS

M QUERY' shows you summary counts for the entire VM NFS server. Use the

DETAILS option on the 'SMSG VMNFS M QUERY RESOURCE' command to

see usage counts for individual mount points.

Note that sometimes the display can contain misleading information. The counts

are reset if the VM NFS server is restarted. A negative mount count could be

seen if an UNMOUNT is done following a server restart. Also, in response to a

person’s request to MOUNT, or for any other service, the NFS client may send

several requests to the server. (Duplicate requests may be sent depending on

network speed, for example.)

3. The VM NFS server maintains a limited amount of host error information for

SFS and BFS directories. This can assist in determining the real reason for an

NFSERR_IO return code (for example) given to an NFS client. See the SMSG

VMNFS M ERROR command in the TCP/IP User’s Guide or more information.

4. Console messages about invalid calls to program number 200006 are

suppressed, unless the mask controlling internal tracing (M 505) is active.

These calls are emitted by AIX® Version 3 clients.

5. The SIGERROR function will automatically write the internal trace table to disk

(file name SIGERROR.TRACEV) if the trace mask is non-zero. A save-area

traceback will also be written to the console when the trace mask is non-zero,

or when the call to SIGERROR is other than the normal termination of the VM

NFS server by an external interrupt.

6. In the event of a programming logic error in the NFS server machine, facilities

exist to enable a virtual machine dump (in VMDUMP format) to be taken. During

abnormal termination or other error events, the default handling is for no storage

Network File System (NFS)

204 z/VM: TCP/IP Diagnosis Guide

dumps to be taken. To enable the taking of a dump, simply create and place a

file with the following file name and file type on the A-disk of the NFS server

virtual machine.

VMNFS DUMP_REQ

The first line of this file should contain the mask value of X'FFFFFFFF'. This will

enable dumps for all classes of errors within the NFS server machine. If you are

experiencing problems with NFS and have called the IBM Software Support

Center for assistance, it is likely that you may be requested to produce a

storage dump in the above mentioned manner to help aid with problem

isolation. Comments may be added to the VMNFS DUMP_REQ file to keep as

a history log. Comments may be in any form, as long as the first line contains

the mask value.

Activating Traces for NFS Server

In the NFS server virtual machine, tracing is activated by specifying either the G or

g option on the :parms tag for VMNFS in the DTCPARMS file.

 :parms.G

The following demonstrates the use of the trace option when used with the VMNFS

command:

�� VMNFS G ��

�� VMNFS g ��

Note that the trace option is not delimited from the command by a left parenthesis.

The trace output is written to the VMNFS LOG file (on the server’s A disk). The log

file contains the calls and responses processed by VMNFS. Each entry written to

the log file consists of the following two records:

v a header record specifying the client address and message length

v a record containing the actual message.

The log file is normally not closed until the server has been terminated. Once

started, VMNFS waits for client requests, but the program may be terminated

manually by an external interrupt created by the CP command EXTERNAL. It is

possible to close the log file without terminating the VM NFS server by using a

CMS command sent by an authorized user to the VMNFS virtual machine with

SMSG:

SMSG VMNFS M CMS FINIS * * A

The VMNFS module also supports the use of a D or d option. The tracing provided

by d is a superset of that provided by g, therefore, there is no requirement to

specify both. This option causes various debugging messages to be written to the

server’s spooled console, and generates the same log file on disk as the g option.

These messages indicate the results of activities performed by the NFS server,

such as task dispatching operations. There can be many messages during normal

Network File System (NFS)

Chapter 16. Network File System 205

operation of the VM NFS server, which can make it tedious to locate more

interesting messages among the mass of debug messages. The D option is

therefore most useful in circumstances where it is necessary to learn whether any

client requests are received by the server, because this option causes console

output for each such request.

The VMNFS LOG file generated by running with tracing activated contains binary

data. A utility program, PRINTLOG, is provided to format the VMNFS LOG file into a

VMNFS PRINT file, suitable for examination. A sample of formatted output is shown

in Figure 96 on page 209.

Additional Trace Options

Additional trace options for the NFS server are described in the following sections.

Trace Tables

An internal trace facility is called from various places in the code to record

information about the details of processing client requests. Data is written to a table

in storage, with enough descriptive information included to make it possible to

extract and format useful information without many dependencies on the actual

storage address at which the program is loaded or on the particular order or

location of the routines that are combined to produce the executable file.

There are actually two internal trace tables. The original one contains fixed-length

entries and is located from pointers that have the external name TRACEPTR. The

newer facility is more versatile, and uses variable-length entries. These features

gave rise to the name TRACEV. The external name TRACEVAD identifies a pointer

to a structure defining the newer trace table.

The original trace routine is still called, but from fewer locations because many of

the original calls to ″trace″ were changed to call ″tracev″ in later releases. Both of

the internal trace tables share the characteristic that they wrap: new information is

written over old data when the capacity of the table is exceeded.

In order to make better use of the available space in the tracev table, calls are

assigned to various classes and a mask is used to select which classes of call will

result in trace data actually recorded in the table. Calls to tracev that specify

classes that have zero mask bits return immediately and no data is saved as a

result of those calls. This mask is a 32-bit field that has the external name

TRACEV@M (the internal name is tracev_m). The mask is zero by default, in order

to eliminate most of the trace overhead in the majority of times when no one is

interested in the data.

The command TWRITE may be sent by CP SMSG to the VMNFS virtual machine

to request it to write the current contents of the trace tables to a disk file or SFS

directory. The default fileid for this file is TRACEV FILE A1, but another name may

be specified in the TWRITE command. For example:

 CP SMSG VMNFS M T DARK TDATA G

will write the file DARK TDATA G1. If a disk file with the specified (or default) name

exists when the TWRITE command is issued, the old file is erased before the new

data is written to disk. The TVPRINT Utility can be used to decode some of this

file’s data into a readable format.

There are several ways to set the tracev mask field. The command line option M

may be used, or the mask field may be dynamically set during operation of the VM

Network File System (NFS)

206 z/VM: TCP/IP Diagnosis Guide

NFS server by use of a MASK command delivered using CP SMSG. The mask

value 0xFFFFFFFF enables all tracing. See file TRACEV.H for trace classes and

related information.

The default mask value may be changed by re-compiling the TRACEV.C file and

rebuilding the VMNFS executable file. For example:

 CC TRACEV C (DEFINE TMASK(0XFFFFFFFF)

will enable all tracing by default.

The trace data file (for example, TRACEV DATA) contains binary information. Care

must be taken when transmitting it so that no data transformations are performed

by code-sensitive programs such as mail processing agents.

Trace Output

The VMNFS PRINT file provides complete information about messages that have

been sent and received. This information includes the name of the programs and

procedures called and the associated versions, IP addresses, and ports used. The

file includes authentication information (passwords) used by clients to identify

themselves to the NFS server, and therefore may be subject to local security

controls pertaining to such information.

Figure 96 on page 209 shows a sample of an NFS trace of a mount request that is

rejected because of invalid authentication data. When the NFS server starts, a

series of 8 messages are exchanged with the Portmapper. These messages are

written to the log file in a somewhat different format than transactions with NFS

clients, but the PRINTLOG program understands this. There are two messages sent

to Portmap to unregister the NFS and MOUNT programs (in case VMNFS is

restarting), then two messages to register these programs. Each call message is

followed by its reply message. Only the last of these 4 interactions (messages 7

and 8) are shown in this sample.

Some of the message fields are described below to assist the reader in

understanding the format of the VMNFS PRINT file. For a complete description of

the NFS message formats, consult RFC 1057 and RFC 1094 (see Chapter 12,

“RPC Programs,” on page 163).

v For message 9:

Offset Field Description

X'0000' XID, X'290D3D97'

X'0004' X'00000000' This is a call message.

X'0008' RPC version 2.

X'000C' Program number, X'186A5'=100005 (MOUNT).

X'0010' Program version 1.

X'0014' Procedure number 6 (a procedure added to the MOUNT program

so that VMNFS can service the mountpw request from a client).

X'0018' Credential authentication type is 0 (null).

X'001C' Length of authentication data is zero.

X'0020' Verifier authentication type is 0 (null).

X'0024' Length of authentication data is zero.

X'0028' Counted string argument length is 19 characters.

Network File System (NFS)

Chapter 16. Network File System 207

X'002C' Start of string data.

v For message 10:

Offset Field Description

X'0000' XID

X'0004' This is a reply message.

X'0008' Reply status = accepted message.

X'000C' RPC accepted message status = executed successfully.

X'0010' Verifier authentication type 0 (null).

X'0014' Authentication length is zero.

X'0018' Value of the called procedure is zero, indicating successful

execution.

v For message 11:

Offset Field Description

X'0014' Procedure number 1 (add mount)

X'0018' Credential authentication type is 1 (Unix).

X'001C' Length of authentication data is 32 bytes.

X'0040' Verifier authentication type is 0 (null).

X'0044' Length of authentication data is zero.

X'0048' Counted string argument length is 14 characters.

X'004C' Start of string data.

v For message 12:

Offset Field Description

X'0018' Value of the called procedure is 13, NFSERR_ACCES (access

denied).

Network File System (NFS)

208 z/VM: TCP/IP Diagnosis Guide

Sent to 014.000.000.000 port 111 length 56 time 811

Message number 7

 0000 00000004 00000000 00000002 000186A0 E..............f.E

A................A

 0010 00000002 00000001 00000000 00000000 E................E

A................A

 0020 00000000 00000000 000186A3 00000002 E..........ft....E

A................A

 0030 00000011 00000801 E........ E

A........ A

234881024 111 28 811

Message number 8

 0000 00000004 00000001 00000000 00000000 E................E

A................A

 0010 00000000 00000000 00000001 E............ E

A............ A

 Received from 129.034.138.022 port 2298 length 64 time 973

 XID 290D3D97 program 100005 procedure 6

Message number 9

 0000 290D3D97 00000000 00000002 000186A5 E...p..........fvE

A).=.............A

 0010 00000001 00000006 00000000 00000000 E................E

A................A

 0020 00000000 00000000 00000013 72657865 E................E

A............rexeA

 0030 63642E31 39312C70 3D726561 64697400 E.........../....E

Acd.191,p=readit.A

 Sent to 129.034.138.022 port 2298 length 28 time 973

 XID 290D3D97 reply_stat 0 accept_stat 0 NFS stat 0

Message number 10

 0000 290D3D97 00000001 00000000 00000000 E...p............E

A).=.............A

 0010 00000000 00000000 00000000 E............ E

A............ A

 Received from 129.034.138.022 port 813 length 92 time 4

 XID 290223BE program 100005 procedure 1

Message number 11

 0000 290223BE 00000000 00000002 000186A5 E..............fvE

A).#.............A

 0010 00000001 00000001 00000001 00000020 E................E

A............... A

 0020 290C2594 00000006 6E667372 696F0000 E...m.........?..E

A).%.....nfsrio..A

 0030 00000000 00000000 00000001 00000000 E................E

A................A

 0040 00000000 00000000 0000000E 72657865 E................E

A............rexeA

 0050 63642E31 39312C72 3D6E0000 E................E

Acd.191,r=n.. A

 Sent to 129.034.138.022 port 813 length 28 time 4

 XID 290223BE reply_stat 0 accept_stat 0 NFS stat 13

Message number 12

 0000 290223BE 00000001 00000000 00000000 E................E

A).#.............A

 0010 00000000 00000000 0000000D E............ E

A............ A

Figure 96. A Sample of an NFS Trace of a Bad Mount

Chapter 16. Network File System 209

210 z/VM: TCP/IP Diagnosis Guide

Chapter 17. Remote Printing Traces

The following sections describe the tracing capabilities available in the client and

server functions provided with the Remote Printing implementation in TCP/IP for

VM.

Remote Printing Client Traces

The client interface to Remote Printing is through the following series of commands:

v LPR – Route a specific file to a designated, possibly remote, printer.

v LPQ – Interrogate the print queue on the designated printer.

v LPRM – Remove a job from the print queue on the designated printer.

Activating Remote Printing Client Traces

In the client virtual machine, tracing is activated by specifying the TRACE

parameter in addition to the usual processing parameters on command invocation.

The following demonstrates the use of the TRACE parameter for each of the client

Remote Printing commands:

�� LPR fn ft

fm

print_options
 TRACE ��

�� LPQ

jobid

printer_info
 TRACE ��

�� LPRM

jobid

printer_info
 TRACE ��

Note that the above examples are meant only to highlight the specification of the

TRACE parameter. They are not meant to be all inclusive examples of the

parameters available for use. Refer to the TCP/IP User’s Guide for information on

the full parameter set available for the commands.

Remote Printing Client Trace Output

The output from the client traces shows the sequence of interactions with the

Remote Printing server. Transferred data is not traced.

Figure 97 shows an example of output received from a client trace of the LPR

command. Trace output from the other client commands is similar. In the trace, the

output has been artificially separated to highlight the various processing sections

involved during command execution.

© Copyright IBM Corp. 1987, 2005 211

---------- Section 1 ----------

lpr doit exec a (trace

Printer name from global variable PRINTER = "FSC3820"

Host name from global variable PRTHOST = "VM1"

lpr to printer "FSC3820" at host "VM1"

Requesting TCP/IP service at 06/04/97 on 13:34:26

Granted TCP/IP service at 06/04/97 on 13:34:27

---------- Section 2 ----------

Resolving VM1 at 06/04/97 on 13:34:27

Host VM1 name resolved to 9.67.58.225 at 06/04/97 on 13:34:27

TCP/IP turned on.

Host "VM1" Domain "TCP.ENDICOTT.IBM.COM" TCPIP Service Machine TCPIP

Trying to open with local port 721 at 06/04/91 on 13:34:27

Connection open from local port 721 to foreign port 515 at 06/04/97 on 13:34:27

Control file name is cfA164VM1

Data file name is dfA164VM1

---------- Section 3 ----------

Sending command 2 argument: "FSC3820"

Command successfully sent

Receiving ACK

 Notification: Data delivered

 ConnState: Open

ReceiveACK: TRUE for byte value 00

Byte size check starts on 06/04/97 at 13:34:27

Byte size check ends on 06/04/97 at 13:34:27

Send command starts on 06/04/97 at 13:34:27

Sending command 3 argument: "405 dfA164VM1"

Command successfully sent

Receiving ACK

 Notification: Data delivered

 ConnState: Open

ReceiveACK: TRUE for byte value 00

Send command ends on 06/04/97 at 13:34:27

---------- Section 4 ----------

Send data starts on 06/04/97 at 13:34:27

Send data ends on 06/04/97 at 13:34:27

Send ACK starts on 06/04/97 at 13:34:27

Sending ACK

ACK successfully sent

Send ACK ends on 06/04/97 at 13:34:27

Receiving ACK

 Notification: Data delivered

 ConnState: Open

ReceiveACK: TRUE for byte value 00

Data file sent.

Figure 97. A Sample of an LPR Client Trace (Part 1 of 2)

Remote Printing Traces

212 z/VM: TCP/IP Diagnosis Guide

The following provides a brief description of each of the sections identified in the

above sample output:

Section 1

 The LPR command is issued to print the file “DOIT EXEC A”.

 Since the invocation parameters did not include the target printer, printer and

host names are resolved through GLOBALV calls.

 The LPR module establishes a connection with the TCP/IP virtual machine,

requesting TCP/IP services.

Section 2

 The host name “VM1” is resolved to its IP address.

 A connection to the Remote Printing server virtual machine (LPSERVE) is

established. This server had previously performed a passive open on port 515.

The source port will be in the range 721 to 731, inclusive.

 Unique names for the control and data files to be shipped to the server are

generated. These names will conform to a specific format as follows:

– will begin with “cfA” (control file) or “dfA” (data file)

– followed by a unique three digit number in range 000 - 999 (to be used as

the job number for the print request)

– followed by the host name of the system which constructs the files.

Section 3

 A “Receive a printer job” command (command code 2) is sent to the server,

specifying the printer name “FSC3820”.

---------- Section 5 ----------

Queuing control line "HVM1"

Queuing control line "PTCPMAINT"

Queuing control line "JDOIT.EXEC"

Queuing control line "CVM1"

Queuing control line "LTCPMAINT"

Queuing control line "fdfA164VM1"

Queuing control line "UdfA164VM1"

Queuing control line "NDOIT.EXEC"

Sending command 2 argument: "74 cfA164VM1"

Command successfully sent

Receiving ACK

 Notification: Data delivered

 ConnState: Open

ReceiveACK: TRUE for byte value 00

---------- Section 6 ----------

Control file sent

Sending ACK

ACK successfully sent

Receiving ACK

 Notification: Data delivered

 ConnState: Open

ReceiveACK: TRUE for byte value 00

Control file sent.

---------- Section 7 ----------

Sending ACK

ACK successfully sent

Receiving ACK

 Notification: Connection state changed

 NewState: Receiving only

ReceiveACK: TRUE for byte value 00

Connection closed.

Figure 97. A Sample of an LPR Client Trace (Part 2 of 2)

Remote Printing Traces

Chapter 17. Remote Printing Traces 213

After successfully sending the command, the client waits for, and receives, the

server’s (positive) acknowledgement.

 The client computes the size of the file to be printed (in octets) and sends a

“Receive data file” subcommand (command code 3) to the server, specifying file

size (405) and data file name (dfA164VM1).

 After successfully sending the command, the client waits for, and receives, the

server’s (positive) acknowledgement.

Section 4

 The client processes the entire data file, sending 405 octets to the server across

the established connection.

 When all data has been sent, an octet of binary zeros is sent as an ACK

(indication) that the file being sent is complete.

 After successfully sending the ACK, the client waits for, and receives, the

server’s (positive) acknowledgement.

Section 5

 The client constructs a control file according to the standard format, computes

its size in octets, and sends a “Receive control file” subcommand (command

code 2) to the server, specifying file size (74) and control file name

(cfA164VM1).

 After successfully sending the command, the client waits for, and receives, the

server’s (positive) acknowledgement.

Section 6

 The client processes the entire control file, sending 74 octets to the server

across the established connection. Note that the trace line Control file sent

(without a trailing period) is written out when the transfer of the control data is

complete.

 When all data has been sent, a byte (octet) of binary zeros is sent as an ACK

(indication) that the file being sent is complete.

 After successfully sending the ACK, the client waits for, and receives, the

server’s (positive) acknowledgement.

 Completion of control file processing is signified by the trace line Control file

sent. (with a trailing period).

Section 7

 After transferring all of the data and control information, an octet of binary zeros

is sent as a final ACK (indication) that the processing is complete.

 After successfully sending the ACK, the client waits for, and receives, the

server’s (positive) acknowledgement.

 The connection state changes from “Open” to “Receiving only” after the final

ACK.

 The connection with the server is subsequently closed, and the file transfer is

considered complete.

Remote Printing Server Traces

The Remote Printing server is activated during processing performed in the

LPSERVE virtual machine when its PROFILE EXEC executes the LPD command.

Remote Printing Traces

214 z/VM: TCP/IP Diagnosis Guide

Activating Remote Printing Server Traces

In the server virtual machine, tracing is activated by one of the following

mechanisms:

v specifying TRACE as a parameter on the LPD command invocation,

v including the DEBUG statement in the LPD CONFIG file, or

v by means of the TRACE ON command of the SMSG interface to the Remote

Printing server.

Remote Printing Server Trace Output

The output from the server traces shows the sequence of interactions with the

clients as well as server-specific processing. Transferred data is not traced.

Figure 98 shows an abridged example of output received from a server trace. In the

trace, the output has been artificially separated to highlight the various processing

sections involved during command execution. The first section deals with trace

output pertaining to initialization processing. The remaining sections of the trace

depict the server processing associated with the the corresponding LPR Client trace

described previously.

---------- Section 1 ----------

IBM LPD Version V2R4 on 06/04/97 at 13:31:09

LPD starting with port 515

Starting TCP/IP service connection

TCP/IP turned on.

Host "VM1" Domain "TCP.ENDICOTT.IBM.COM" TCPIP Service Machine TCPIP

Host VM1 name resolved to 9.67.58.225

RSCS name is RSCS.

 LOCAL added with address 191

 FSC3820 added with address 191

 FSD3820 added with address 191

 FSE3820 added with address 191

 lp added with address 191

Host "RIOS" resolved to 9.67.30.50. Printer name is "lp".

 PUNCH added with address 191

 ...End of Printer chain...

Passive open on port 515

06/04/97 13:31:10 Ready

Figure 98. A Sample of a Remote Printing Server Trace (Part 1 of 3)

Remote Printing Traces

Chapter 17. Remote Printing Traces 215

---------- Section 2 ----------

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Connection state changed

New connection state Trying to open on connection 1 with reason OK.

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Connection state changed

New connection state Open on connection 1 with reason OK.

Passive open on port 515

Connection open. Reading command.

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

New command 2 data "FSC3820".

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

---------- Section 3 ----------

Reading additional data on 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

New subcommand 3 operands "405 dfA164VM1".

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

Reading additional data on 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

---------- Section 4 ----------

Reading additional data on 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

New subcommand 2 operands "74 cfA164VM1".

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

Reading additional data on 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

 : : : : : : :

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

---------- Section 5 ----------

Reading additional data on 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Data delivered

Timer cleared for connection 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Connection state changed

New connection state Sending only on connection 1 with reason OK.

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification FSend response

Closing connection 1

Figure 98. A Sample of a Remote Printing Server Trace (Part 2 of 3)

Remote Printing Traces

216 z/VM: TCP/IP Diagnosis Guide

The following provides a brief description of each of the phases identified in the

above sample output:

Section 1

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Connection state changed

New connection state Connection closing on connection 1 with reason OK.

GetNextNote with ShouldWait of TRUE

GetNextNote returns. Connection 1 Notification Connection state changed

New connection state Nonexistent on connection 1 with reason OK.

End Connection 1 for OK.

---------- Section 6 ----------

06/04/91 13:34:42 Job 164 received FSC3820 9.67.58.225

Job 164 added to work queue

06/04/91 13:34:42 Job 164 scheduled FSC3820 9.67.58.225

Released storage at 00351000

ProcessWork starting on job queue

 Work Queue start

 164 JOBstartPRINTING

 Work Queue end

 Job 164 for FSC3820 dispatched in state JOBstartPRINTING

06/04/91 13:34:42 Job 164 printing FSC3820 9.67.58.225

PRINTER 020 defined

Spooling 020 this way " TO TCPUSR5".

Tagging 020 with "BTP311S6 N23R1 ".

ProcessWork end with queue

 Work Queue start

 164 JOBcontinuePRINTING

 Work Queue end

---------- Section 7 ----------

GetNextNote with ShouldWait of FALSE

ProcessWork starting on job queue

 Work Queue start

 164 JOBcontinuePRINTING

 Work Queue end

 Job 164 for FSC3820 dispatched in state JOBcontinuePRINTING

flpNewBlock: State build IsAtEof FALSE

flpNewBlock: State check last IsAtEof FALSE

flpNewBlock: State call IsAtEof FALSE

 : : : : :

flpNewBlock: State build IsAtEof FALSE

flpNewBlock: State check last IsAtEof TRUE

flpNewBlock: State call IsAtEof TRUE

06/04/91 13:34:47 Job 164 sent FSC3820 9.67.58.225

ProcessWork end with queue

 Work Queue start

 164 JOBfinishPRINTING

 Work Queue end

GetNextNote with ShouldWait of FALSE

---------- Section 8 ----------

ProcessWork starting on job queue

 Work Queue start

 164 JOBfinishPRINTING

 Work Queue end

 Job 164 for FSC3820 dispatched in state JOBfinishPRINTING

Job 164 removed from work queue

06/04/91 13:34:47 Job 164 purged FSC3820 9.67.58.225

ProcessWork end with queue

 Work Queue start

 Work Queue end

GetNextNote with ShouldWait of TRUE

Figure 98. A Sample of a Remote Printing Server Trace (Part 3 of 3)

Remote Printing Traces

Chapter 17. Remote Printing Traces 217

The Remote Printing server announces the start of initialization activities.

 The server establishes a connection with the TCP/IP virtual machine, requesting

TCP/IP services.

 The host name “VM1” is resolved to its IP address.

 The configuration file is processed to build the control tables representing the

supported printers (and possibly punches). Note that system names are

resolved to their respective IP addresses at initialization time.

 The server records the date and time that it completes initialization plus the port

it is listening on in the console log.

Section 2

 The server establishes a connection with the client requesting remote printing

services.

 A “Receive a printer job” command (command code 2) is received from the

client with a specified printer name of “FSC3820”.

 The server validates the printer name and its availability and sends an

acknowledgement to the client.

Section 3

 A “Receive data file” subcommand (command code 3) is received from the client

with a specified file size of 405 octets and a data file name of “dfA164VM1”.

 The server acknowledges the receipt of this subcommand from the client.

 The 405 octets of data are received, followed by the receipt of an octet of binary

zeros signifying the end of file transfer.

 The server acknowledges the receipt of the “end of file” indicator from the client.

Section 4

 A “Receive control file” subcommand (command code 2) is received from the

client with a specified file size of 74 octets and a control file name of

“cfA164VM1”.

 The server acknowledges the receipt of this subcommand from the client.

 The 74 octets of data are received, followed by the receipt of an octet of binary

zeros signifying the end of file transfer.

 The server acknowledges the receipt of the “end of file” indicator from the client.

Section 5

 A “final” octet of binary zeros is received from the client to signify the end of all

data transmission.

 The connection state is modified from an “Open” to a “Sending only” status.

 The server acknowledges the receipt of the “end of transmission” indicator from

the client.

 The connection state is marked “Nonexistent” and the connection with the client

is terminated, marking the completion of the “file transfer” portion of the

operation.

Section 6

 The received print job is placed onto the queue for the designated printer. The

printer name was passed as an argument on the “Receive a printer job”

command (FSC3820). The “job id” is taken from the arguments passed to the

Remote Printing Traces

218 z/VM: TCP/IP Diagnosis Guide

server on the “Receive data file” and “Receive control file” subcommands. The

IP address of the system on which the printer is located was determined (and

saved) during server initialization.

 The placement of an entry on the printer queue triggers the ProcessWork

routine to receive control.

 The status of the job is modified from “scheduled” to “JOBstartPRINTING”.

 A virtual printer is defined and initialized according to the parameters either

passed with the print request or extracted from the configuration file entry for the

target printer.

Section 7

 The actual “printing” of the job is initiated and its status is modified from

“JOBstartPRINTING” to “JOBcontinuePRINTING”.

 The file to be printed is processed on a block-by-block basis. Note that the

example shows an abridged version of the tracing for this phase of the

operation.

 When an end-of-file condition is encountered, the status is is modified from

“JOBcontinuePRINTING” to “JOBfinishPRINTING”.

Section 8

 The “JOBfinishPRINTING” status causes the job to be removed from the work

queue and purged.

 The virtual printer defined for processing the print request is detached.

 A final interrogation of the work queue indicates that there is no more work to be

performed.

 The print server returns to a passive wait state, awaiting the next print request.

For additional information on the command codes and the format of the control file

lines, see RFC 1179, Line Printer Daemon Protocol.

Remote Printing Traces

Chapter 17. Remote Printing Traces 219

220 z/VM: TCP/IP Diagnosis Guide

Chapter 18. Remote Execution Protocol Traces

The following sections describe the tracing capabilities available in the client and

server functions provided with the Remote Execution Protocol implementation in

TCP/IP for VM.

Remote Execution Protocol Client Traces

The client interface to the Remote Execution Protocol is through the REXEC

command. This command provides the capability to execute a specified command

on a foreign host and receive the results on the local host.

Activating Remote Execution Protocol Client Traces

In the client virtual machine, tracing is activated by specifying the -d parameter in

addition to the usual processing parameters on command invocation. The following

demonstrates the use of the -d parameter for the REXEC command:

�� REXEC

-?

-d

-t

timeout

-n

-l

userid
 �

�

-p

password

 -s512

-s

port

foreignhost

command

��

Specification of the -d parameter will cause the trace output to be written to the

client’s console. Note that the trace processing does not suppress passwords

supplied with the command or extracted from a NETRC DATA file, so the resultant

trace output file should be treated as “company confidential” material.

The above example is intended only to highlight the specification of the parameter

necessary to activate tracing. Refer to the TCP/IP User’s Guide for information on

the usage of the other parameters.

Remote Execution Protocol Client Trace Output

Figure 99 shows an example of the output received from a client trace of the

REXEC command, specifying a “q n” (Query Names) command to be executed on

the remote host. The entered command and the response are highlighted in order

to differentiate that data from the trace information.

rexec -d -l guest -p guest vm1 q n

parms is -d -l guest -p guest vm1 q n

Variables have the following assignments:

fhost : vm1

userid : guest

passwd : guest

command : q n

calling GetHostResol with vm1

Connecting to vm1 , port REXEC (512)

Figure 99. A Sample of a Remote Execution Client Trace (Part 1 of 2)

© Copyright IBM Corp. 1987, 2005 221

Remote Execution Protocol Server Traces

The Remote Execution Protocol server (REXECD) is activated during processing

performed in the server virtual machine when its PROFILE EXEC executes the

REXECD command.

Activating Remote Execution Protocol Server Traces

In the server virtual machine, tracing is activated by specifying the -d parameter in

addition to the usual processing parameters on command invocation. The following

demonstrates the use of the -d parameter for the REXECD command:

��

REXECD

-?

-d

-r

�

-s agent_id

-t 240

-t timeout

�

�
 -e 512

-e port

 -h 514

-h port

��

Specification of the -d parameter will cause the trace output to be written to the

server’s console.

The above example is intended only to highlight the specification of the parameter

necessary to activate tracing. Refer to the TCP/IP Planning and Customization for

information on the usage of the other parameters.

Passive Conn - OK on local port 601

passive open complete on port 0

Active Conn - OK on local port 601

active open complete on port 1

rexec invoked

sending: 601 guest guest q n

D2 len 20

getnextnote until DD

Connection state changed

Trying to open

Connection state changed

Open

Data delivered

Bytes in 1

Data delivered

Bytes in 374

OPERATOR - 601, NETVPPI - DSC, GCS5 - DSC, GCS4 - DSC

GCS3 - DSC, GCS2 - DSC, GCS - DSC, SQLDBA - DSC

X25IPI - DSC, TCPMAINT - 602, LPSERVE - DSC, ADM_SERV - DSC

VMKERB - DSC, VMNFS - DSC, NAMESRV - DSC, PORTMAP - DSC

SMTP - DSC, FTPSERVE - DSC, REXECD - DSC, SNMPD - DSC

SNMPQE - DSC, TCPIP - DSC, RXAGENT1 - DSC

VSM - TCPIP

Connection state changed

Sending only

 returning from REXEC_UTIL

rexec complete

Figure 99. A Sample of a Remote Execution Client Trace (Part 2 of 2)

Remote Execution Protocol Traces

222 z/VM: TCP/IP Diagnosis Guide

Remote Execution Protocol Server Trace Output

Figure 100 shows an abridged example of the output received from a server trace.

The section of the trace shown depicts the server processing which transpired when

the “q n” command was issued from the client and correlates with the trace

information from the client trace shown previously.

 .

 .

Connection: 0

Notification: Connection state changed

 New state: Trying to open

 Reason: OK

Connection: 0

Notification: Connection state changed

 New state: Open

 Reason: OK

Tcp passive open for rexec conn 2

Connection: 0

Notification: Data delivered

 Bytes delivered: 20

 Push flag: 1

active connection: 3using first free agent agent RXAGENT1 is free

 cmd - MSG RXAGENT1 q n

len - 16

Notification: IUCV interrupt

 IUCV interrupt incountered at 160600

received IUCV interrupt - from user RXAGENT1

iucv type is - pending connectionNotification: IUCV interrupt

 IUCV interrupt incountered at 160600

received IUCV interrupt - from user

iucv type is - pending (priority) msgclearing actconn 3

 Notification: IUCV interrupt

 IUCV interrupt incountered at 160600

received IUCV interrupt - from user

iucv type is - sever connectionclose conn = 0close actconn 3

 RXAGENT1 to fpool

 clearing actconn 3

 Connection: 0

Notification: Connection state changed

 New state: Receiving only

 Reason: OK

Connection: 3

Notification: Connection state changed

 New state: Receiving only

 Reason: OK

Connection: 0

Notification: Connection state changed

 New state: Nonexistent

 Reason: Foreign host aborted the connection

bye to conn = 0

destroy actconn 3

Connection: 3

Notification: Connection state changed

 New state: Nonexistent

 Reason: Foreign host aborted the connection

bye to conn = 3

 .

 .

Figure 100. A Sample of a Remote Execution Protocol Server Trace

Remote Execution Protocol Traces

Chapter 18. Remote Execution Protocol Traces 223

224 z/VM: TCP/IP Diagnosis Guide

Chapter 19. TFTP Client Traces

TCP/IP for VM implements a Trivial File Transfer Protocol (TFTP) client function.

The client interface is through the TFTP command. This command provides a

simple method to get files from, and send files to, a foreign host. TFTP cannot list

directories and has no provision for user authentication. The following sections

describe how to activate and interpret TFTP client traces.

Activating Traces

In the client virtual machine, tracing is activated (and deactivated) by means of the

TRACE subcommand once a TFTP session has been established. The

subcommand acts as a toggle switch to enable or disable the tracing of TFTP

packets. When tracing is enabled, information is displayed about each TFTP packet

that is sent or received.

Trace Output

Figure 101 shows an example of a TFTP session that includes the output obtained

from executing the TFTP TRACE subcommand. An explanation of the trace data

format follows the example.

All trace entries for TFTP have the same general format:

 direction (size) kind per-packet-information

where:

tftp elmer

Command:

trace

Packet tracing is enabled.

Command:

get config.sys config.sys

Sending: (22) <RRQ> config.sys NETASCII

Received: (516) <DATA> Block Number = 1

Sending: (4) <ACK> Block Number = 1

Received: (516) <DATA> Block Number = 2

Sending: (4) <ACK> Block Number = 2

Received: (516) <DATA> Block Number = 3

Sending: (4) <ACK> Block Number = 3

Received: (111) <DATA> Block Number = 4

Sending: (4) <ACK> Block Number = 4

1643 bytes transferred in 4.825 seconds. Transfer rate 0.341 Kbytes/sec.

Command:

get startup.cmd startup.cmd

Sending: (23) <RRQ> startup.cmd NETASCII

Received: (36) <DATA> Block Number = 1

Sending: (4) <ACK> Block Number = 1

32 bytes transferred in 3.399 seconds. Transfer rate 0.009 Kbytes/sec.

Command:

get autoexec.bat autoexec.bat

Sending: (24) <RRQ> autoexec.old NETASCII

Received: (140) <DATA> Block Number = 1

Sending: (4) <ACK> Block Number = 1

136 bytes transferred in 4.475 seconds. Transfer rate 0.030 Kbytes/sec.

Command:

quit

Ready; T=0.14/0.36 17:54:57

Figure 101. A Sample of a TFTP Client Trace

© Copyright IBM Corp. 1987, 2005 225

Field Description

direction Is either Sending or Received.

(size) Is the number of bytes in the packet.

kind Is the type of TFTP packet. The TFTP packet types

are:

RRQ Read request

WRQ Write request

Data Data packet

ACK Acknowledgement packet

Error Error packet.

per-packet-information Is other data contained in the packet. The type of

information displayed about each packet is:

RRQ Foreign filename, transfer mode

WRQ Foreign filename, transfer mode

Data Block number

ACK Block number

Error Error number, error text (if any).

TFTP Client Traces

226 z/VM: TCP/IP Diagnosis Guide

Chapter 20. TFTPD Traces

TCP/IP for VM implements a Trivial File Transfer Protocol Daemon (TFTPD)

function. The daemon interface is through the TFTPD command. The following

sections describe how to activate and interpret TFTPD traces.

Activating Traces

In the daemon virtual machine, tracing is activated (and deactivated) by means of

the TRACE subcommand once a TFTPD session has been established. The

subcommand acts as a toggle switch to enable or disable the tracing of TFTPD

operations. When tracing is enabled, information is displayed about major operation

checkpoints. For example, trace output is created when read requests are received

and complete or when errors are detected.

You can also use the TRACE operand on the TFTPD command to enable the

tracing of TFTPD operations.

Trace Output

Figure 102 shows an example of a TFTPD session that includes the output

obtained from executing the TFTPD TRACE subcommand. An explanation of the

trace data format follows the example.

© Copyright IBM Corp. 1987, 2005 227

Formats of TFTPD Trace Records

TFTPD trace entries identify 5 basic events and TCP/IP errors:

v Acceptance of a read or write request

v Resending of packets due to a timeout

v Dropping of a client due to resend limit being exceeded

v Sending or reception of error packets

v Socket related errors.

The first line of the trace entry contains:

v A 4 digit trace code

v A description of the trace code

v Time and date stamp and

TRACE

TFTPD Ready;

1000 9.100.20.99 1685 (........) 05/15/97 09:27:50 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/kernel

1000 9.100.20.43 1065 (........) 05/15/97 09:28:11 READ REQUEST ACCEPT SENT

 O H 8192 /QIBM/ProdData/NetworkStation/kernel

1500 9.100.20.99 1685 (........) 05/15/97 09:28:12 READ COMPLETED

 PKTS=252 FILE SIZE=2044868

1000 9.100.20.99 1662 (........) 05/15/97 09:28:20 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/standard.nsm

1000 9.100.20.99 1663 (........) 05/15/97 09:28:20 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/required.nsm

1500 9.100.20.99 1663 (........) 05/15/97 09:28:21 READ COMPLETED

 PKTS=3 FILE SIZE=1916

1000 9.100.20.99 1664 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/control.nsm

1000 9.100.20.99 1665 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/SysDefaults/ibmwall.xbm

1500 9.100.20.99 1665 (........) 05/15/97 09:28:21 READ COMPLETED

 PKTS=3 FILE SIZE=3041

1000 9.100.20.99 1666 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/SysDefaults/ibmwall.xbm

1500 9.100.20.99 1666 (........) 05/15/97 09:28:21 READ COMPLETED

 PKTS=3 FILE SIZE=3041

1500 9.100.20.99 1664 (........) 05/15/97 09:28:21 READ COMPLETED

 PKTS=3 FILE SIZE=1042

4000 9.100.20.99 1667 (........) 05/15/97 09:28:21 FILE NOT VALID RESPONSE

 /QIBM/ProdData/NetworkStation/StationConfig/hosts.nsm

1500 9.100.20.99 1662 (........) 05/15/97 09:28:21 READ COMPLETED

 PKTS=3 FILE SIZE=174

1000 9.100.20.99 1678 (........) 05/15/97 09:28:26 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/mods/libxm.nws

1500 9.100.20.43 1065 (........) 05/15/97 09:28:36 READ COMPLETED

 PKTS=252 FILE SIZE=2044868

1500 9.100.20.99 1678 (........) 05/15/97 09:28:36 READ COMPLETED

 PKTS=155 FILE SIZE=1252482

1000 9.100.20.99 1680 (........) 05/15/97 09:28:36 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/mods/actlogin.nws

1000 9.100.20.99 1681 (........) 05/15/97 09:28:37 READ REQUEST ACCEPT SENT

 O M 8192 /QIBM/ProdData/NetworkStation/mods/export.nws

1500 9.100.20.99 1681 (........) 05/15/97 09:28:37 READ COMPLETED

 PKTS=7 FILE SIZE=36671

5100 9.100.20.99 1680 (........) 05/15/97 09:28:38 ERROR DATAGRAM RECEIVED

 ERROR=0 File read terminated by client

Figure 102. A Sample of a TFTPD Client Trace

TFTPD Traces

228 z/VM: TCP/IP Diagnosis Guide

v Client identification information (when the entry relates to a client). This can

include:

– IP address of the client

– Port number used by the client

– User ID associated with the client.

Depending upon the trace entry, additional lines of information may be displayed;

such lines are indented under the first line.

The following example shows the format of the first line of a client related trace

entry.

code xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss description of trace code

where:

code

is a 4 digit trace code.

xxx.xxx.xxx.xxx

is the IP address of the client in dotted decimal notation.

port

is the port that the client is using.

userid

is the user ID associated with the IP address; This association is determined by

the TFTPD USERLIST file. If the client IP address is not listed in this file, then

“........” is displayed.

mm/dd/yy

is the date portion of the timestamp, where mm is the month, dd is the day and

yy is the year.

hh:mm:ss

is the time portion of the timestamp, where hh is the hour (in 24 hour format),

mm is the minutes and ss is the seconds.

description of trace code

is a 25 character description of the trace code

TFTPD Trace Codes:

The trace codes are:

1000 A read request was accepted.

1500 A read operation has completed.

2000 A write request was accepted.

2500 A write operation has completed.

3000 Timeout; a response was resent.

3500 Timeout; the timeout limit was reached, and the client dropped.

4000 A file not valid response was sent.

4100 A missing BLKSIZE response was sent.

4200 An Access Violation response was sent.

4300 A Bad XFER (transfer) Mode response was sent.

5000 A spurious ACK was received and has been ignored.

5100 An error datagram was received.

5200 An unknown datagram was received.

6100 An unexpected RECVFROM error occurred.

6200 An unexpected SENDTO error occurred.

6300 An unexpected SOCKINIT error occurred.

6301 An unexpected SOCKET error occurred.

6302 An unexpected IOCTL error occurred.

6303 An unexpected BIND error occurred.

6304 An unexpected SELECT error occurred.

TFTPD Traces

Chapter 20. TFTPD Traces 229

6305 An unexpected CANCEL error occurred.

TFTPD Trace Entry: 1000

This trace code is the result of accepting a READ request.

1000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss READ ACCEPTED DATA SENT

 x c blksize pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

x indicates the transfer mode, “N” for NETASCII and “O” for OCTET mode.

c is a hit or miss indicator, indicating whether the file was in cache when

requested (a hit) or whether it had to be loaded (a miss). ″H″ indicates that the

file was in cache. ″M″ indicates that the file was not in cache.

Note: A miss would be indicated for a file in cache that is marked for a drop by

the DROPFILE subcommand. Subsequent read requests would require a

new copy of the file to be obtained.
blksize

is the blocksize being used for the transfer.

pathname

is the name of the file being transferred.

TFTPD Trace Entry: 1500

This trace code is the result of receiving an ACK associated with a client read

operation. The ACK indicates the client received the last packet of a transmitted file.

1500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss READ COMPLETED

 PKTS=pkts FILE SIZE=filesize

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

pkts

number of packets sent.

filesize

size of the file in bytes.

TFTPD Trace Entry: 2000

This trace code is the result of accepting a WRITE request.

2000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss WRITE ACCEPTED DATA SENT

 x blksize pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

x indicates the transfer mode, “N” for NETASCII and “O” for OCTET mode.

blksize

is the blocksize being used for the transfer.

pathname

is the name of the file that is being transferred.

TFTPD Trace Entry: 2500

This trace code is the result of receiving the DATA packet on a client write request.

2500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss WRITE COMPLETED

 PKTS=pkts FILE SIZE=filesize

TFTPD Traces

230 z/VM: TCP/IP Diagnosis Guide

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

pkts

number of packets sent.

filesize

size of the file, in bytes.

TFTPD Trace Entry: 3000

This trace code is the result of determining that time has expired for a client to send

or receive a packet so that the response must be resent.

3000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss TIMEOUT - RESPONSE RESENT

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 3500

This trace code is the result of the TFTPD daemon determining that a timeout

occurred, but that the maximum number of resends was reached so the client was

dropped.

3500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss TIMEOUT - CLIENT DROPPED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 4000

This trace code is the result of the TFTPD daemon determining that the file to be

sent to the client was not valid.

4000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss FILE NOT VALID RESPONSE

 pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

pathname

is the name of the file that was not valid.

TFTPD Trace Entry: 4100

This trace code is the result of the TFTPD daemon receiving a request which

contained the BLKSIZE parameter, but no value for that parameter.

4100 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss MISSING BLKSIZE RESPONSE

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 4200

This trace code is the result of the TFTPD daemon receiving a read request for a

file that the client was not permitted to access.

4200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss ACCESS VIOLATION RESPONSE

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Traces

Chapter 20. TFTPD Traces 231

TFTPD Trace Entry: 4300

This trace code is the result of the TFTPD daemon receiving a READ or WRITE

request with the transfer mode parameter specified, but not valid.

4300 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss BAD XFER MODE RESPONSE

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 5000

This trace code is the result of the TFTPD daemon receiving an unexpected ACK

which it ignored.

5000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss SPURIOUS ACK IGNORED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 5100

This trace code is the result of the TFTPD daemon receiving an error datagram

from a client.

5100 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss ERROR DATAGRAM RECEIVED

 ERROR=errnum errdesc

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

errnum

is the error number received from the client.

errdesc

is the error description sent by the client in the error datagram.

TFTPD Trace Entry: 5200

This trace code is the result of the TFTPD daemon receiving an unknown

datagram.

5200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss UNKNOWN DATAGRAM RECEIVED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228.

TFTPD Trace Entry: 6100

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET RECVFROM operation.

6100 mm/dd/yy hh:mm:ss BAD RECVFROM ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the RECVFROM function.

errno

is the error number set by the RECVFROM function.

TFTPD Traces

232 z/VM: TCP/IP Diagnosis Guide

TFTPD Trace Entry: 6200

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET SENDTO operation.

6200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss BAD SENDTO ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the SENDTO function.

errno

is the error number set by the SENDTO function.

TFTPD Trace Entry: 6300

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET initialization operation.

6300 mm/dd/yy hh:mm:ss BAD SOCKINIT ERROR

 RC=rc REASON=reason SOCKETS=socket

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the Socket Initialize function.

reason

is the reason code set by the Socket Initialize function.

socket

is the socket number (if any) returned by the Socket Initialize function.

TFTPD Trace Entry: 6301

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET SOCKET operation.

6301 mm/dd/yy hh:mm:ss BAD SOCKET ERROR

 SOCKET=socket ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

socket

is the socket number.

errno

is the error number set by the SOCKET function.

TFTPD Trace Entry: 6302

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET IOCTL operation.

6302 mm/dd/yy hh:mm:ss BAD IOCTL ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the IOCTL function.

errno

is the error number set by the IOCTL function.

TFTPD Traces

Chapter 20. TFTPD Traces 233

TFTPD Trace Entry: 6303

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET BIND operation.

6303 mm/dd/yy hh:mm:ss BAD BIND ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the BIND function.

errno

is the error number set by the BIND function.

TFTPD Trace Entry: 6304

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET SELECT operation.

6304 mm/dd/yy hh:mm:ss BAD SELECT ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the SELECT function.

errno

is the error number set by the SELECT function.

TFTPD Trace Entry: 6305

This trace code is the result of the TFTPD daemon encountering an unexpected

error on a SOCKET CANCEL operation.

6305 mm/dd/yy hh:mm:ss BAD CANCEL ERROR

 RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on

page 228. The additional lines consist of:

rc is the return code set by the CANCEL function.

errno

is the error number set by the CANCEL function.

TFTPD Traces

234 z/VM: TCP/IP Diagnosis Guide

Chapter 21. BOOT Protocol Daemon (BOOTPD) Traces

TCP/IP for VM implements the BOOTP daemon to respond to client requests for

boot information using information contained in a BOOTP machine file. The daemon

interface is through the BOOTPD command. The following sections describe how to

activate and interpret BOOTPD traces.

Activating Traces

In the daemon virtual machine, tracing is activated (and deactivated) by means of

the TRACE command once the BOOTP daemon has been installed and a BOOTPD

session has been established. The subcommand acts as a toggle switch to enable

or disable tracing of BOOTPD operations. When tracing is enabled, information is

displayed about each BOOTPD packet that is sent or received.

You can also use the TRACE operand on the BOOTPD command to enable tracing

of BOOTPD operations.

Trace Output

Figure 103 shows an example of a BOOTPD session that includes the output

obtained from executing the BOOTPD TRACE subcommand. An explanation of the

trace data format follows the example.

TRACE

BOOTPD Ready;

9000 Time: 09:18:36.744586 ON 19970515

1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.110 THRU 9.100.30.75:

 OP = 1 CIADDR = 0.0.0.0

 HTYPE = 6 YIADDR = 0.0.0.0

 HLEN = 6 SIADDR = 0.0.0.0

 HOPS = 1 GIADDR = 9.100.20.110

 XID = 000001BE CHADDR = 0000E5E82CFF

 SNAME =

 FILE =

 OPTIONS = 638253632B0E49424D414354205620312E302E30FF00000000200011FFFA81440

 00090000000000000000000FFFB367E0000000081007DE8CC000000FF

3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.110 THRU 9.100.30.75

 OP = 2 CIADDR = 0.0.0.0

 HTYPE = 6 YIADDR = 9.100.20.43

 HLEN = 6 SIADDR = 9.100.30.75

 HOPS = 1 GIADDR = 9.100.20.110

 XID = 000001BE CHADDR = 0000E5E82CFF

 SNAME =

 FILE = /QIBM/ProdData/NetworkStation/kernel

 OPTIONS = 638253630104FFFFFF000204FFFFB9B00304096414FD04040964144B050409641

 9FC0604096414FC0F10656E6469636F74742E69626D2E636F6D11012FFF

9000 Time: 09:21:27.423501 ON 19970515

1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.110 THRU 9.100.30.75:

 OP = 1 CIADDR = 0.0.0.0

 HTYPE = 6 YIADDR = 0.0.0.0

 HLEN = 6 SIADDR = 0.0.0.0

 HOPS = 1 GIADDR = 9.100.20.110

 XID = 000001BD CHADDR = 0000E5E8DC61

 SNAME =

 FILE =

 OPTIONS = 638253632B0E49424D414354205620312E302E30FF00000000200011FFF8F3380

 00090000000000000000000FFFB367E0000000081007DE8CC000000FF

3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.110 THRU 9.100.30.75

 OP = 2 CIADDR = 0.0.0.0

 HTYPE = 6 YIADDR = 9.100.20.99

 HLEN = 6 SIADDR = 9.100.30.75

 HOPS = 1 GIADDR = 9.100.20.110

 XID = 000001BD CHADDR = 0000E5E8DC61

 SNAME =

 FILE = /QIBM/ProdData/NetworkStation/kernel

 OPTIONS = 638253630104FFFFFF000204FFFFB9B00304096414FD04040964144B050409641

 9FC0604096414FC0F10656E6469636F74742E69626D2E636F6D11012FFF

Figure 103. A Sample of a BOOTPD Client Trace

© Copyright IBM Corp. 1987, 2005 235

BOOTPD Trace Records

BOOTPD trace entries identify 5 basic events:

v Time at which BootPD began processing a set of requests

v Reception of a datagram from a client or gateway

v Declining to respond to a client or gateway due to some error or limit

v Forwarding of a request to another BootP daemon

v The attempt to respond to a client or gateway.

BOOTPD Trace Record Format

The first line of trace entry consists of a trace code followed by a description of the

event along with other pertinent information. Additional lines of information may be

displayed, indented under the first line.

BOOTPD Trace Codes

The trace codes are:

1000 Received a request sent by a client

1100 Received a request which was forwarded by a BootP daemon

1900 Unrecognized request was received; the opcode was neither request or

reply.

3000 A BootP reply was sent to a client

3100 A BootP reply was sent to another BootP daemon, to be passed to a client.

32xx Request is being forwarded to another BootP daemon. The xx subcodes

indicate the reasons for forwarding:

01 Forwarding was specified, but no entry exists in the machine table.

02 Always forward was specified.

03 Client specified a server to which to forward the request.

00 Reason for forwarding was not known.
40xx The BootP daemon is declining to respond to a request. The xx subcodes

that follow indicate the reasons for declining to respond:

01 Entry was not found in the machine table.

02 Request received on an adapter that was partially excluded, for

which the entry matches the exclusion criteria.

03 Unrecognized packet opcode was received

04 Could not forward because the hop count expired.

05 Could not determine the client IP address.

06 Could not determine the bootfile pathname.

07 Target server is on the same cable.

08 Unable to determine the adapter over which to reply.

00 Reason for declining is not known.
9000 Time Stamp, including the time and date in standard format.

Trace events which relate to the transmission of BOOT requests or replies, include

information about the packet.

 OP = opcode CIADDR = ipaddr

 HTYPE = htype YIADDR = ipaddr

 HLEN = hlen SIADDR = ipaddr

 HOPS = hops GIADDR = ipaddr

 XID = xid CHADDR = chaddr

 SNAME = servname

 FILE = bootfile

 VEND = venddata

where

OP = opcode

indicates the operation code: 1 for a request or 2 for a reply.

CIADDR = ipaddr

indicates the client IP address, if specified by the client.

BOOTPD Traces

236 z/VM: TCP/IP Diagnosis Guide

HTYPE = htype

indicates the network hardware type.

YIADDR = ipaddr

indicates the IP address of the client.

HLEN = hlen

indicates the length of the hardware address.

SIADDR = ipaddr

indicates the Server IP address.

HOPS = hops

indicates the current hops count.

GIADDR = ipaddr

indicates the gateway IP address.

XID = xid

indicates the current transaction ID specified by the client.

CHADDR = chaddr

indicates the client hardware address. This field may be a maximum of 16 bytes

long.

SNAME = servname

indicates the Server Host Name. This field may be a maximum of 64 bytes

long.

FILE = bootfile

indicates the boot file name. This field may be a maximum of 128 bytes long.

VEND = venddata

indicates the current contents of the vendor-specific area. This field may be a

maximum of 64 bytes long.

BOOTPD Traces

Chapter 21. BOOT Protocol Daemon (BOOTPD) Traces 237

BOOTPD Traces

238 z/VM: TCP/IP Diagnosis Guide

Chapter 22. Dynamic Host Configuration Protocol Daemon

(DHCPD) Traces

TCP/IP for VM implements the DHCP daemon to respond to client requests for boot

information using information contained in a DHCP machine file. The daemon

interface is through the DHCPD command and DHCPD subcommands. The

following sections describe how to activate and interpret DHCPD traces.

Activating Traces

In the daemon virtual machine, tracing is activated (and deactivated) by means of

the TRACE subcommand once the DHCPD daemon has been installed and a

DHCPD session has been established. The TRACE subcommand acts as a toggle

switch to enable or disable tracing of DHCPD operations. When tracing is enabled,

information is displayed about each DHCPD packet that is sent or received.

You can also use the TRACE operand on the DHCPD command to enable tracing

of DHCPD operations.

Trace Output

Figure 104 shows an example of a DHCPD session that includes the output

obtained from executing the DHCPD TRACE subcommand. An explanation of the

trace data format follows the example.

DHCPD Trace Records

DHCPD trace entries identify 6 basic events:

v Time at which DHCPD began processing a set of requests

v Reception of a datagram from a client or gateway

v Declining to respond to a client or gateway due to some error or limit

v Forwarding of a request to another DHCP/BootP daemon

v The attempt to respond to a client or gateway.

v Timer expiration and related activities

9000 TIME: 13:58:46.115502 ON 19970819

1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.88 THRU 9.100.30.75:

 OP = 1 CIADDR = 9.100.20.126 DHCPTYPE = DHCPDISCOVER

 HTYPE = 6 YIADDR = 0.0.0.0

 HLEN = 6 SIADDR = 0.0.0.0

 HOPS = 1 GIADDR = 9.100.20.88

 SECS = 100 FLAGS = 0

 XID = 00000A56 CHADDR = 0000E5E83CC0

 SNAME =

 FILE =

 OPTIONS = 63825363350101390202404D0C49424D4E534D20312E302E303C1349424D204E6

 574776F726B2053746174696F6EFF

5300 ICMP ECHO REQUEST TO 9.100.20.126 THRU 9.100.30.75

9000 TIME: 13:58:51.669942 ON 19970819

5000 ICMP TIMER EXPIRED

3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.88 THRU 9.100.30.75

 OP = 2 CIADDR = 0.0.0.0 DHCPTYPE = DHCPOFFER

 HTYPE = 6 YIADDR = 9.100.20.126

 HLEN = 6 SIADDR = 9.100.30.75

 HOPS = 0 GIADDR = 9.100.20.88

 SECS = 0 FLAGS = 0

 XID = 00000A56 CHADDR = 0000E5E83CC0

 SNAME =

 FILE =

 OPTIONS = 6382536335010233040000012C360409641E4B0104FFFFFF000204FFFFC7C0030

 4096414FD040C09641E4B09010A0D098203030504098219FC0604098219FC0C05

 4144414D470F10656E6469636F74742E69626D2E636F6D3A04000000963B04000

 000FF420747444C564D4B3443242F5149424D2F50726F64446174612F4E657477

 6F726B53746174696F6E2F6B65726E656CFF

Figure 104. A Sample of a DHCPD Client Trace

© Copyright IBM Corp. 1987, 2005 239

DHCPD Trace Record Format

The first line of trace entry consists of a trace code followed by a description of the

event along with other pertinent information. Additional lines of information may be

displayed, indented under the first line.

DHCPD Trace Codes

The DHCPD trace codes are:

1000 Received a request sent by a client

1100 Received a request that was forwarded by a BootP daemon

1900 Unrecognized request was received; the opcode was neither request or

reply

3000 A BootP/DHCP reply was sent to a client

3100 A BootP/DHCP reply was sent to another BootP/DHCP daemon, to be

passed to a client

32xx Request is being forwarded to another BootP/DHCP daemon. The xx

subcodes that follow indicate the reasons for forwarding:

01 Forwarding was specified, but no entry exists in the machine table

02 Always forward was specified

03 Client specified a server to which to forward the request

00 Reason for forwarding was not known

40xx The DHCP daemon is declining to respond to a request. The xx subcodes

that follow indicate the reasons for declining to respond:

01 Entry was not found in the machine table

02 Request received on an adapter that was partially excluded, for

which the entry matches the exclusion criteria

03 Unrecognized packet opcode was received

04 Could not forward because the hop count expired

05 Could not determine the client IP address

06 Could not determine the bootfile pathname

07 Target server is on the same cable

08 Unable to determine the adapter over which to reply

09 SupportBootP is NO

10 Client is on a different subnet than the requested address

11 Requested address is restricted

12 Requested address is in use by another client

13 Internal error

14 Requested address is differs from machine table entry

15 No address is available

16 SupportUnlistedClients is NO

17 Client is not recognized

18 Client is not in a valid state

19 Request is not correctly formatted

20 Not selected as the server

21 Ignore any DHCPOffer messages

22 Address is being declined

23 Address is being released

24 Ignore any DHCPAck messages

25 Ignore any DHCPNack messages

26 Nothing possible for DHCPInform

27 Client statement specified: NONE

28 Waiting for ICMP Echo to complete

29 No address available

DHCPD Traces

240 z/VM: TCP/IP Diagnosis Guide

30 Client is on a subnet that is not supported

31 Unrecognized DHCP message type

00 Reason for declining is not known

5000 ICMP Timer expired with a response reply due

5100 Received an ICMP Echo reply

5300 Sending an ICMP Echo request

5500 Lease expired for an address

9000 Time Stamp, including the time and date in standard format

9900 Indicates the time when DHCPD concluded a particular unit of work

9950 The start time when a packet is attempted to be sent (in the SendPacket

routine)

9951 The time when a packet send completes

E0xx Server processing error. The xx subcodes that follow indicate the nature of

the error encountered:

00 Binding file content error

Trace events which relate to the transmission of BOOT requests or replies, include

information about the packet.

 OP = opcode CIADDR = ipaddr DHCPTYPE = msgtype

 HTYPE = htype YIADDR = ipaddr

 HLEN = hlen SIADDR = ipaddr

 HOPS = hops GIADDR = ipaddr

 XID = xid CHADDR = chaddr

 SNAME = servname

 FILE = bootfile

 OPTIONS = optiondata

where

OP = opcode

indicates the operation code: 1 for a request or 2 for a reply.

CIADDR = ipaddr

indicates the client IP address, if specified by the client.

DHCPTYPE = msgtype

indicates the type of DHCP message. This parameter is shown only for DHCP

protocol requests and replies.

HTYPE = htype

indicates the network hardware type.

YIADDR = ipaddr

indicates the IP address of the client.

HLEN = hlen

indicates the length of the hardware address.

SIADDR = ipaddr

indicates the Server IP address.

HOPS = hops

indicates the current hop count.

GIADDR = ipaddr

indicates the gateway IP address.

XID = xid

indicates the current transaction ID specified by the client.

CHADDR = chaddr

indicates the client hardware address. This field may be a maximum of 16 bytes

long.

DHCPD Traces

Chapter 22. Dynamic Host Configuration Protocol Daemon (DHCPD) Traces 241

SNAME = servname

indicates the Server Host Name. This field may be a maximum of 64 bytes

long. When “SNAME” is followed by “(O)”, the field contains configuration

options instead of only SNAME data. The data shown is a hexadecimal

representation of the contents of the field.

FILE = bootfile

indicates the boot file name. This field may be a maximum of 128 bytes long.

When “FILE” is followed by “(O)”, the field contains configuration options instead

of only FILE data. The data shown is a hexadecimal representation of the

contents of the field.

OPTIONS = optiondata

indicates the current contents of the option area. This field may be a maximum

of 64 bytes long.

DHCPD Traces

242 z/VM: TCP/IP Diagnosis Guide

Chapter 23. Hardware Trace Functions

This chapter describes PCCA devices. These devices support Local Area Networks

(LANs).

You can trace LAN events in two ways: sniffer traces and CCW traces. Sniffer

traces are attached directly to LANs, and are not dependent on the operating

system. This chapter describes the CCW traces, which are the most common I/O

traces implemented on IBM/370-based LANs.

PCCA Devices

The following sections describe the PCCA block structure, control messages, LAN

messages, token-ring frames, and 802.2 LLC frames.

PCCA Block Structure

You should understand the PCCA block structure to interpret CCW traces. The

PCCA block is a series of messages. Figure 105 shows the PCCA block structure.

The first two bytes of each message is an integer value that determines the offset

in the block of the next message. The last offset value, X'0000', designates the end

of the message. The first two bytes of each data packet indicate the LAN and

adapter numbers.

The PCCA block can be divided into two modes. Figure 106 shows a sample of a

PCCA block with a series of messages. All highlighted halfwords in Figure 106 are

offset fields in the block and denote the beginning of the new message. The last

offset is X'0000'.

 Message #1 Message #2 Message #N

 �──────────────────� �──────────────────� �──────────────────�

┌────────┬───────────┬────────┬───────────┐ ┌────────┬───────────┬────────┐

│ Offset │ Data Pckt │ Offset │ Data Pckt │...│ Offset │ Data Pckt │ 0000 │

└────────┴───────────┴────────┴───────────┘ └────────┴───────────┴────────┘

 �──────�

 2 bytes

Figure 105. PCCA Block Structure

© Copyright IBM Corp. 1987, 2005 243

Control Messages

Control messages perform functions, such as starting the LAN and obtaining the

hardware addresses of the LAN adapters. Figure 107 shows the structure of a

PCCA control message, which has three fields.

The following are descriptions of the fields shown in Figure 107.

v Net Type (1 byte); X'00' for control messages

This field helps to determine whether the packet is used for control or LAN

operations.

v Adapter Number (1 byte); X'00', ignored for control messages

v Control field

– Control command (1 byte)

- X'00' Control Timing (sent by PCCA)

- X'01' Start LAN

- X'02' Stop LAN

- X'04' LAN Stats

- X'08' Shutdown

– Control flags (1 byte)

- X'00' From host

- X'01' From PCCA

– Control sequence (1 halfword)

– Return code (1 halfword)

– Net type_2 (1 byte)

This is the net type of the adapter referred to by the control packet.

– Adapter number_2 (1 byte)

This is the number of the adapter referred to by the control packet.

– Count (1 halfword)

This occurs at startup. It is used for block size or a count of items in the data

field (general control packet has 56 bytes, X'38').

– Control reserved

– Ignored (1 halfword)

– Hardware address (6 bytes).

3C TRAPID ENTRY **MP** 3C080000 01000000 E3C3D740 40404040 CP

 TRAPID = TCP, TRAPSET = IOSET, IODATA = 500

 TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0FC318

 DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

 -> CCW(1) = 01559028 240000AA, CCW ADDRESS = 5590B8, ** IDA **

 -> IDAW(1) = 14A020,

 DATA = 001C0000 01000000 00030100 00380000 *................*

 0003D3C3 E2F100D7 C6B800D7 00380000 *..LCS1.PF..P....*

 04000000 00030100 00380000 0003D3C3 *..............LC*

 E2F100D7 C6B800D7 00540000 01000000 *S1.PF..P........*

 00030200 00380000 0003D3C3 E2F100D7 *..........LCS1.P*

 C6B800D7 00700000 04000000 00030200 *F..P............*

 00380000 0003D3C3 E2F100D7 C6B800D7 *......LCS1.PF..P*

 008C0000 01000000 00030201 00380000 *................*

 0003D3C3 E2F100D7 C6B800D7 00A80000 *..LCS1.PF..P.y..*

 04000000 00030201 00380000 0003D3C3 *..............LC*

 E2F100D7 C6B800D7 0000 *S1.PF..P.. *

20 TOD STAMP **MP** 20000000 00000000 A298CC1A 19EA1000 CP

Figure 106. A Sample of a PCCA Control Message Block

Hardware Trace Functions

244 z/VM: TCP/IP Diagnosis Guide

LAN Messages

LAN messages are used to send and receive LAN information or data to and from

other LANs. PCCA LAN messages have three fields.

v Net Type (1 byte)

– X'01' for Ethernet and 802.3

– X'02' for token-ring

– X'07' for FDDI networks

v Adapter Number (1 byte), X'00' or X'01'

v Data for the adapter.

Figure 108 shows a sample of a trace started by a CPTRAP IO command issued

on a VM/SP6 system.

PCCA token-ring packets conform to the canonical 802 standards if they are

specified in a PROFILE TCPIP file. If the PCCA packet is sent to a token-ring, use

the 802.x or Ethernet layout.

Token-Ring Frames

Figure 109 shows the most common layout for token-ring packets. The components

of the token-ring packet are:

v SD - Starting delimiter (1 byte)

v AC - Access control (1 byte)

v FD - Frame control (1 byte)

v DA - Destination address (6 bytes)

v SA - Source address (6 bytes)

v Data - Data field, including LLC frame (variable length)

v ED - End of frame (6 bytes).

Trace output does not include the starting delimiter or the end of frame.

CCW traces provide all fields from AC to Data fields for token-ring frames.

┌──────┬──────┬────────────────────────┐

│ X'00'│ X'00'│ Control information │

└──────┴──────┴────────────────────────┘

Figure 107. PCCA Control Message Structure

┌─────────┬─────────┬───────────────────────┐

│ LAN No. │ ADP No. │ Data to send on a LAN │

└─────────┴─────────┴───────────────────────┘

Figure 108. PCCA LAN Messages Structure

┌────┬────┬────┬────┬────┬──────┬────┐

│ │ │ │ │ │ │ │

│ SD │ AC │ FD │ DA │ SA │ data │ ED │

│ │ │ │ │ │ │ │

└────┴────┴────┴────┴────┴──────┴────┘

 � �

 └────Trace Information─────┘

Figure 109. Common Layout of a Token-Ring Packet

Hardware Trace Functions

Chapter 23. Hardware Trace Functions 245

Note: When the first bytes of the source address are ORed with X'80', the frame

contains routing information.

802.2 LLC Frame

An 802.2 LLC frame incorporates token-ring and 802.3 packets. This frame is a

SNAP fashion frame for internet protocols and has the following layout:

1. DSAP and SSAP (2 bytes) X'AAAA' designates a SNAP frame

2. Control field (1 byte)

3. Origin/Port (1 byte)

4. Ether type, which has the values:

v X'0800' IP protocol

v X'0806' ARP protocol

v X'8035' RARP protocol.

The data fields for the upper protocol follow the LLC frame.

CCW

There are three main sections of CCW trace output:

v CSW/CCW

v Hexadecimal representation of data

v EBCDIC character representation of data.

Table 24 lists the functions of the PCCA CCW codes.

 Table 24. PCCA CCW Codes

Code Function

X'01' Write PCCA.

X'02' Read PCCA.

X'03' Nop PCCA.

X'04' Sense PCCA.

X'C3' Set X mode PCCA.

X'E4' Sense ID PCCA.

The length of the CCW data field is usually X'5000' for runtime operations, and the

CSW count cannot be zero.

Samples of CCW Traces

Figure 110 and Figure 111 show samples of traces started by a CPTRAP IO

command issued on a VM/SP6 system. The data output, which is in hexadecimal

format, is displayed in four columns. X'3C' entries represent the CCW and data.

X'20' entries are the Time Of Day clock stamp associated with the CCW. For more

information on CPTRAP, see the CP System Commands Guide.

Figure 110 is a sample of a VM CCW trace for I/O 560-561. The layout for this trace

is:

Offset Field Description

X'0038' PCCA offset

X'02' PCCA, network type (token-ring)

X'00' PCCA, adapter number

X'6040' Token-ring, AC and FD

X'FFFFFFFFFFFF' Token-ring, destination address (broadcast)

Hardware Trace Functions

246 z/VM: TCP/IP Diagnosis Guide

X'90005A6BB806' Token-ring, source address (ORed with 8000)

X'8220' Token-ring, routing information

X'AAAA' 802.2 DSAP and SSAP (snap mode)

X'03' 802.2 control field

X'000000' 802.2 Prot/Org code

X'0806' 802.2 ether type (ARP type)

X'0006' Beginning of ARP packet

X'0000' Last offset, PCCA packet end delimiter.

Figure 111 shows a sample trace of an IP/ICMP packet on a PCCA token-ring. The

layout for this trace is:

Offset Field Description

X'0068' PCCA offset

X'02' PCCA, network type

X'00' PCCA, adapter number

X'6040' Token-ring, AC and FD

X'10005A250858' Token-ring, destination address

X'000000000000' Token-ring, source address

X'AAAA03000000' 802.2 frame

X'0800' 802.2 ether type (IP)

X'45' Beginning of IP packet (version and IP header

length)

X'00' IP type of service

X'004D' IP total length

X'002B' IP datagram identification

X'0000' IP flags and fragment offset

X'3C' Time to live

X'11' IP protocol (ICMP)

X'05A3' Header checksum

X'09433AE9' Source IP address

3C TRAPID ENTRY **MP** 3C080000 00900000 E3C3D740 40404040 CP

 TRAPID = TCP, TRAPSET = IOSET, IODATA = 500

 TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0F5C40

 DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

 -> CCW(1) = 01559028 2400003A, CCW ADDRESS = 5590B8, ** IDA **

 -> IDAW(1) = 14A020,

 DATA = 00380200 6040FFFF FFFFFFFF 90005A6B *....-!,*

 B8068220 AAAA0300 00000806 00060800 *..b.............*

 06040001 10005A6B B8060943 3AE9C534 *......!,.....ZE.*

 00D7C530 09433AEA 0000 *.PE....... *

20 TOD STAMP **MP** 20000000 00000000 A298CC1D B04DE000 CP

Figure 110. A Sample of an ARP Frame on a PCCA Token-Ring

Hardware Trace Functions

Chapter 23. Hardware Trace Functions 247

X'09432B64' Destination IP address

X'0000' Last offset, PCCA packet end delimiter.

Figure 112 on page 249 shows a sample of PCCA block encapsulating an IP/TCP

packet on an Ethernet LAN. The trace was run on a VM/SP5 system. The data

output, which is in hexadecimal format, is displayed in three columns. In SP4-5

CCW traces, ignore the first three words. The following is a description of the

highlighted fields that mark the beginning of blocks or packets:

Field Description

X'00F6' Next message offset

X'45' Starting of IP packet

X'0616' Starting of TCP packet

X'0000' Last offset, PCCA packet end delimiter.

3C TRAPID ENTRY **MP** 3C080000 00C00000 E3C3D740 40404040 CP

 TRAPID = TCP, TRAPSET = IOSET, IODATA = 500

 TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0F5C40

 DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

 -> CCW(1) = 01559028 2400006A, CCW ADDRESS = 5590B8, ** IDA **

 -> IDAW(1) = 14A020,

 DATA = 00680200 60401000 5A250858 00000000 *....- ..!.......*

 0000AAAA 03000000 08004500 004D002B *.............(..*

 00003C11 05A30943 3AE90943 2B640400 *.....t...Z......*

 00350039 ED000001 01000001 00000000 *................*

 00000652 414C564D 4D085443 50495044 *.....<.((...&;&;*

 45560752 414C4549 47480349 424D0343 *.....<.......(..*

 4F4D0000 010001C3 0000 *|(.....C.. *

20 TOD STAMP **MP** 20000000 00000000 A298CC1E 01BE0000 CP

Figure 111. A Sample of an IP/ICMP Packet on a PCCA Token-Ring

Hardware Trace Functions

248 z/VM: TCP/IP Diagnosis Guide

Figure 113 shows the IP header format. For more information about IP headers, see

RFC 791, which is represented with 32-bit words. This sample trace has the same

IP header shown in Figure 112.

Figure 114 shows the TCP header format.

 I/O CUU =0AE0 CSW = E0930DC0 0C004F08 PSW ADDR = 20D694

 17:19:41/378927

 CCW = 0291D928 24005000 (930DB8)

 C9C4C1E6 0091B920 00000000 *IDAW.J......*

 00F60100 00DD0102 33C102CF *.6.......A..*

 1F600887 08004500 00E437B3 *...G.....U..*

 00004006 397C2C4A 01102C4A *.. *

 01180616 00C80000 02212F4D *.....H......*

 E9995018 111C1D4F 0000084C *ZR..........*

 00000100 00003C00 00000250 *............*

 0000BC00 00004442 53000000 *............*

 69777331 34007361 30303130 *............*

 00000000 00000000 54532053 *............*

 43490000 0200FFFF FFFF0100 *............*

 00007800 00002F75 73722F74 *............*

 6573742F 30313233 34353637 *............*

 000034AD 0A0020AD 0A002CFC *............*

 F70014FC F70034FC F7007A9E *7...7...7...*

 02004AFF F7000100 73613031 *....7.......*

 20707264 000044AD 0A0038FC *............*

 F70038FC F70040FC F700906D *7...7. .7...*

 02002900 00000100 00000000 *............*

 00000200 00000000 00000000 *............*

 00000000 0000B601 00000000 *............*

 00000000 F7000000 00000000 *....7.......*

Figure 112. A Sample of a VM/SP4-5 CCW Trace

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 4 5 0 0 0 0 E 4

 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0

 |Version| IHL |Type of Service| Total Length |

 +-+

 3 7 B 3 0 0 0 0

 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 | Identification |Flags| Fragment Offset |

 +-+

 4 0 0 6 3 9 7 C

 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0

 | Time to Live | Protocol | Header Checksum |

 +-+

 44.74.1.16

 2 C 4 A 0 1 1 0

 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

 | Source Address |

 +-+

 44.74.1.24

 2 C 4 A 0 1 1 8

 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0

 | Destination Address |

 +-+

 | Options | Padding |

 +-+

Figure 113. IP Header Format

Hardware Trace Functions

Chapter 23. Hardware Trace Functions 249

Matching CCW Traces and TCP/IP Traces

TCPIP and CCW traces can be matched in numerous ways by using the following:

v The CCW address, which is provided in PCCA traces

v The device address and first command (CCW code)

v The IP packets ID (IP traces)

v All fields identified by decimal integers in TCPIP internal traces can be converted

to hexadecimal values and matched with the values in the CCW trace or text

output if it is provided by the trace.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 6 1 6 0 0 C 8

 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

 | Source Port | Destination Port |

 +-+

 0 0 0 0 0 2 2 1

 0 1 0 0 0 1 0 0 0 0 1

 | Sequence Number |

 +-+

 2 F 4 D E 9 9 9

 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

 | Acknowledgment Number |

 +-+

 5 0 1 8 1 1 C 1

 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 | Data | |U|A|P|R|S|F| |

 | Offset| Reserved |R|C|S|S|Y|I| Window |

 | | |G|K|H|T|N|N| |

 +-+

 1 D 4 F 0 0 0 0

 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 | Checksum | Urgent Pointer |

 +-+

 | Options | Padding |

 +-+

 L

 0 8 4 C 0 0 0 0

 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 | data |

 +-+

Figure 114. TCP Header Format

Hardware Trace Functions

250 z/VM: TCP/IP Diagnosis Guide

Appendix A. Return Codes

This appendix describes return codes sent by TCP/IP to the local client and return

codes for User Datagram Protocol (UDP).

TCP/IP Return Codes

Table 25 describes the return codes sent by TCP/IP to servers and clients through

the Virtual Machine Communication Facility (VMCF).

 Table 25. TCP/IP Return Codes Sent to Servers and Clients

Return Message Value Description

OK 0

ABNORMALcondition −1 This indicates a VMCF error that is

not fatal.

ALREADYclosing −2 Connection is closing.

BADlengthARGUMENT −3 Length parameter is invalid.

CANNOTsendDATA −4

CLIENTrestart −5

CONNECTIONalreadyEXISTS −6

DESTINATIONunreachable −7 Returned from the remote site or

gateway.

ERRORinPROFILE −8

FATALerror −9 This is a fatal VMCF error.

HASnoPASSWORD −10 Errors ...

INCORRECTpassword −11 ...in opening

INVALIDrequest −12

INVALIDuserID −13 ...file

INVALIDvirtualADDRESS −14 ...used

KILLEDbyCLIENT −15

LOCALportNOTavailable −16

MINIDISKinUSE −17 ...by

MINIDISKnotAVAILABLE −18 ...MonCommand

NObufferSPACE −19

NOmoreINCOMINGdata −20

NONlocalADDRESS −21

NOoutstandingNOTIFICATIONS −22

NOsuchCONNECTION −23

NOtcpIPservice −24

NOTyetBEGUN −25 Client has not called BeginTcpIp.

NOTyetOPEN −26 Client has not called TcpOpen.

OPENrejected −27

PARAMlocalADDRESS −28 Invalid...

PARAMstate −29 ...values...

© Copyright IBM Corp. 1987, 2005 251

Table 25. TCP/IP Return Codes Sent to Servers and Clients (continued)

Return Message Value Description

PARAMtimeout −30 ...specified...

PARAMunspecADDRESS −31 ...in connection

PARAMunspecPORT −32 ...information record

PROFILEnotFOUND −33

RECEIVEstillPENDING −34

REMOTEclose −35 Foreign client is closing.

REMOTEreset −36

SOFTWAREerror −37 This is a WISCNET software error.

TCPipSHUTDOWN −38

TIMEOUTconnection −39

TIMEOUTopen −40

TOOmanyOPENS −41

UNAUTHORIZEDuser −43

UNEXPECTEDsyn −44

UNIMPLEMENTEDrequest −45

UNKNOWNhost −46 There is a lack of information in the

tables.

UNREACHABLEnetwork −47

UNSPECIFIEDconnection −48

VIRTUALmemoryTOOsmall −49

WRONGsecORprc −50 The request does not have the

necessary security or priority.

X25tooCongested −51 No virtual circuits are available.

YOURend −55

ZEROresources −56

UDP Error Return Codes

Table 26 describes errors that are specific to UDP.

 Table 26. UDP Error Return Codes

Return Message Value Description

UDPlocalADDRESS −57 Invalid local address.

UDPunspecADDRESS −59 Unspecified local address.

UDPunspecPORT −60 Unspecified local port.

UDPzeroRESOURCES −61 No space available to continue.

FSENDstillPENDING −62 TcpFSend is still outstanding.

Return Codes

252 z/VM: TCP/IP Diagnosis Guide

Appendix B. Related Protocol Specifications

IBM is committed to industry standards. The internet protocol suite is still evolving

through Requests for Comments (RFC). New protocols are being designed and

implemented by researchers, and are brought to the attention of the internet

community in the form of RFCs. Some of these are so useful that they become a

recommended protocol. That is, all future implementations for TCP/IP are

recommended to implement this particular function or protocol. These become the

de facto standards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for z/VM are based on the following RFCs:

 RFC Title Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol

Addresses to 48.Bit Ethernet Address for Transmission on Ethernet

Hardware

D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

877 Standard for the Transmission of IP Datagrams over Public Data Networks J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C.

Mogul, M. Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl,

E.J. Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems

Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.

Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

© Copyright IBM Corp. 1987, 2005 253

RFC Title Author

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol

Specification

K. Hardwick, J.

Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L. Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Microsystems

Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems

Incorporated

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts-Communication Layers R.T. Braden

1123 Requirements for Internet Hosts-Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based

Internets

M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-based

Internets

K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.

Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group, L.

McLaughlin III

1180 TCP/IP Tutorial, T. J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions (Updates RFC 1034, RFC 1035) C.F. Everhart, L.A.

Mamakos, R. Ullmann, P.V.

Mockapetris,

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie,

J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI

Networks

D. Katz

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked Experienced

Internet User Questions

G.S. Malkin, A.N. Marine,

J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based

Internets: MIB-II,

K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program

Interface

G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB IEEE 802 4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E.

Decker

RFCs

254 z/VM: TCP/IP Diagnosis Guide

RFC Title Author

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version

3)

S. Willis, J. Burruss

1293 Inverse Address Resolution Protocol T. Bradley, C. Brown

1270 SNMP Communications Services F. Kastenholz, ed.

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.

Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked New Internet

User Questions

G.S. Malkin, A.N. Marine

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K.

McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie,

J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J.

Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R.

Ullmann

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border

Gateway Protocol

D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F. Kastenholz

1440 SIFT/UFT:Sender-Initiated/Unsolicited File Transfer R. Troth

1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 J. Heinanen

1540 IAB Official Protocol Standards J.B. Postel

1583 OSPF Version 2 J.Moy

1647 TN3270 Enhancements B. Kelly

1700 Assigned Numbers J.K. Reynolds, J.B. Postel

1723 RIP Version 2 — Carrying Additional Information G. Malkin

1813 NFS Version 3 Protocol Specification B. Callaghan, B.

Pawlowski, P. Stauback,

Sun Microsystems

Incorporated

2060 IMAP Version 4 Protocol Specification M. Crispin

2225 Classical IP and ARP over ATM M. Laubach, J. Halpern

2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFCs

Appendix B. Related Protocol Specifications 255

RFC Title Author

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.

Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6) Specification

A. Conta, S. Deering

2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.

Haberman

3484 Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

These documents can be obtained from:

Government Systems, Inc.

Attn: Network Information Center

14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the

NIC, either individually or on a subscription basis. Online copies are available using

FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the

following format:

RFC:RFC-INDEX.TXT

RFC:RFCnnnn.TXT

RFC:RFCnnnn.PS

Where:

nnnn Is the RFC number.

TXT Is the text format.

PS Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail

server, by sending a message to service@nic.ddn.mil with a subject line of

RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.

To request a copy of the RFC index, send a message with a subject line of

RFC INDEX.

For more information, contact nic@nic.ddn.mil. Information is also available

through http://www.ietf.org/.

RFCs

256 z/VM: TCP/IP Diagnosis Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in all

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, New York 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1987, 2005 257

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply

reliability, serviceability, or function of these programs.

258 z/VM: TCP/IP Diagnosis Guide

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

BookManager

CICS

DB2

DFSMS/VM

DPI

eServer

GDDM

HiperSockets

IBM

IBMLink

IMS

Language Environment

MVS

MVS/ESA

NetView

OfficeVision

OpenExtensions

OS/390

Performance Toolkit for VM

PROFS

RACF

RETAIN

S/390

SAA

SQL/DS

System/370

Systems Application Architecture

VM/ESA

VTAM

z/OS

z/VM

zSeries

NetView is a registered trademark in the United States and other countries licensed

exclusively through Tivoli.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 259

260 z/VM: TCP/IP Diagnosis Guide

Glossary

This glossary describes the most common terms

associated with TCP/IP communication in an

internet environment, as used in this book.

For a list of z/VM terms and their definitions, see

the z/VM: Glossary book.

The glossary is also available through the online

HELP Facility. For example, to display the

definition of “cms”, enter:

help glossary cms

You will enter the glossary HELP file and the

definition of “cms” will be displayed as the current

line. While you are in the glossary HELP file, you

can also search for other terms.

If you are unfamiliar with the HELP Facility, you

can enter:

help

to display the main HELP menu, or enter:

help cms help

for information about the HELP command.

For more information about the HELP Facility, see

the z/VM: CMS User’s Guide.

If you do not find the term you are looking for, see

the IBM Dictionary of Computing, New York:

McGraw-Hill, 1994.

For abbreviations, the definition usually consists

only of the words represented by the letters; for

complete definitions, see the entries for the words.

Numerics

3172. IBM Interconnect Controller.

3174. IBM Establishment Controller.

3270. Refers to a series of IBM display devices; for

example, the IBM 3275, 3276 Controller Display Station,

3277, 3278, and 3279 Display Stations, the 3290

Information Panel, and the 3287 and 3286 printers. A

specific device type is used only when a distinction is

required between device types. Information about

display terminal usage also refers to the IBM 3138,

3148, and 3158 Display Consoles when used in display

mode, unless otherwise noted.

37xx Communication Controller. A network interface

used to connect a TCP/IP for z/VM or z/OS® network

that supports X.25 connections. NCP with X.25 NPSI

must be running in the controller, and VTAM must be

running on the host.

6611. IBM Network Processor.

8232. IBM LAN Station.

9370. Refers to a series of processors, namely the

IBM 9373 Model 20, the IBM 9375 Models 40 and 60,

and the IBM 9377 Model 90 and other models.

A

abend. The abnormal termination of a program or

task.

abstract syntax. A description of a data structure that

is independent of machine-oriented structures and

encodings.

Abstract Syntax Notation One (ASN.1). The OSI

language for describing abstract syntax.

active gateway. A gateway that is treated like a

network interface in that it is expected to exchange

routing information, and if it does not do so for a period

of time, the route associated with the gateway is

deleted.

active open. The state of a connection that is actively

seeking a service. Contrast with passive open.

adapter. A piece of hardware that connects a

computer and an external device. An auxiliary device or

unit used to extend the operation of another system.

address. The unique code assigned to each device or

workstation connected to a network. A standard internet

address uses a two-part, 32-bit address field. The first

part of the address field contains the network address;

the second part contains the local address.

address mask. A bit mask used to select bits from an

Internet address for subnet addressing. The mask is 32

bits long and selects the network portion of the Internet

address and one or more bits of the local portion. It is

sometimes called a subnet mask.

address resolution. A means for mapping network

layer addresses onto media-specific addresses. See

ARP.

Address Resolution Protocol (ARP). A protocol used

to dynamically bind an internet address to a hardware

© Copyright IBM Corp. 1987, 2005 261

address. ARP is implemented on a single physical

network and is limited to networks that support

broadcast addressing.

address space. A collection of bytes that are

allocated, and in many ways managed, as a single

entity by CP. Each byte within an address space is

identified by a unique address. An address space

represents an extent of storage available to a program.

Address spaces allocated by VM range in size from

64KB to 2GB.

Advanced Interactive Executive (AIX). IBM’s

licensed version of the UNIX operating system.

Advanced Program-to-Program Communications

(APPC). The interprogram communication service

within SNA LU 6.2 on which the APPC/VM interface is

based.

Advanced Research Projects Agency (ARPA). Now

called DARPA, its the U.S. Government agency that

funded the ARPANET.

Advanced Research Projects Agency Network

(ARPANET). A packet switched network developed in

the early 1970’s that is the forerunner of today’s

Internet. It was decommissioned in June 1990.

agent. As defined in the SNMP architecture, an agent,

or an SNMP server is responsible for performing the

network management functions requested by the

network management stations.

AIX. Advanced Interactive Executive.

American National Standard Code for Information

Interchange (ASCII). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), used for information

interchange among data processing systems, data

communication systems, and associated equipment.

The ASCII set consists of control characters and graphic

characters. The default file transfer type for FTP, used

to transfer files that contain ASCII text characters.

American National Standards Institute (ANSI). An

organization consisting of producers, consumers, and

general interest groups that establishes the procedures

by which accredited organizations create and maintain

voluntary industry standards in the United States. ANSI

is sponsored by the Computer and Business Equipment

Manufacturer Association and is responsible for

establishing voluntary industry standards.

ANSI. American National Standards Institute.

API. Application Program Interface.

APPC. Advanced Program-to-Program

Communications.

application. The use to which an information

processing system is put, for example, a payroll

application, an airline reservation application, a network

application.

application layer. The seventh layer of the OSI (Open

Systems Interconnection) model for data

communication. It defines protocols for user or

application programs.

Application Program Interface (API). The formally

defined programming-language interface between an

IBM system control program or licensed program and its

user. APIs allow programmers to write application

programs that use the TCP, UDP, and IP layers of the

TCP/IP protocol suite.

argument. A parameter passed between a calling

program and a called program.

ARP. Address Resolution Protocol.

ARPA. Advanced Research Projects Agency.

ARPANET. Advanced Research Projects Agency

Network.

ASCII. American National Standard Code for

Information Interchange. The default file transfer type for

FTP, used to transfer files that contain ASCII text

characters.

ASN.1. Abstract Syntax Notation One.

ASYNC. Asynchronous.

asynchronous (ASYNC). Without regular time

relationship; unexpected or unpredictable with respect to

the execution of program instruction. See synchronous.

asynchronous communication. A method of

communication supported by the operating system that

allows an exchange of data with remote device, using

either a start-stop line or an X.25 line. Asynchronous

communications include the file transfer and the

interactive terminal facility support.

Athena Widgets. The X Window widget set developed

by MIT for Project Athena.

Attachment Unit Interface (AUI). Connector used

with thick Ethernet that often includes a drop cable.

AUI. Attachment Unit Interface.

attention key. A function key on terminals that, when

pressed, causes an I/O interruption in the processing

unit.

authentication server. The service that reads a

Kerberos database to verify that a client making a

request for access to an end-service is the client named

262 z/VM: TCP/IP Diagnosis Guide

in the request. The authentication server provides an

authenticated client ticket as permission to access the

ticket-granting server.

authenticator. Information encrypted by a Kerberos

authentication server that a client presents along with a

ticket to an end-server as permission to access the

service.

authorization. The right granted to a user to

communicate with, or to make use of, a computer

system or service.

B

backbone. In a local area network multiple-bridge ring

configuration, a high-speed link to which rings are

connected by means of bridges. A backbone can be

configured as a bus or as a ring. In a wide area

network, a high-speed link to which nodes or data

switching exchanges (DSES) are connected.

background task. A task with which the user is not

currently interacting, but continues to run.

baseband. Characteristic of any network technology

that uses a single carrier frequency and requires all

stations attached to the network to participate in every

transmission. See broadband.

Basic Encoding Rules (BER). Standard rules for

encoding data units described in ASN.1. Sometimes

incorrectly grouped under the term ASN.1, which

correctly refers only to the abstract description

language, not the encoding technique.

Basic Input/Output System (BIOS). A set of routines

that permanently resides in read-only memory (ROM) in

a PC. The BIOS performs the most basic tasks, such as

sending a character to the printer, booting the computer,

and reading the keyboard.

batch. An accumulation of data to be processed. A

group of records or data processing jobs brought

together for processing or transmission. Pertaining to

activity involving little or no user action. See interactive

Bayonet Neill-Concelman (BNC). A standardized

connector used with Thinnet and coaxial cable.

Because It’s Time NETwork (BITNET). A network of

hosts that use the Network Job Entry (NJE) protocol to

communicate. The network is primarily composed of

universities, nonprofit organizations, and research

centers. BITNET has recently merged with the

Computer and Science Network (CSNET) to form the

Corporation for Research and Educational Networking

(CSNET). See CSNET.

BER. Basic Encoding Rules.

Berkeley Software Distribution (BSD). Term used

when describing different versions of the Berkeley UNIX

software, as in “4.3BSD UNIX”.

BFS. Byte File System.

big-endian. A format for storage or transmission of

binary data in which the most significant bit (or byte)

comes first. The reverse convention is little-endian.

BIOS. Basic Input/Output System.

BITNET. Because It’s Time NETwork.

Blat. A denial-of-service attack in which the TCP/IP

stack is flooded with SYN packets that have spoofed

source IP addresses and port numbers that match the

destination IP addresses and port numbers. The Blat

attack also has the URG flag turned on in the TCP

header and has the ability to incrementally spoof the

source IP address. Blat is a version of the Land attack.

block. A string of data elements recorded, processed,

or transmitted as a unit. The elements can be

characters, words, or physical records.

blocking mode. If the execution of the program

cannot continue until some event occurs, the operating

system suspends the program until that event occurs.

BNC. Bayonet Neill-Concelman.

BOOTPD. Bootstrap Protocol Daemon.

Bootstrap Protocol Daemon (BOOTPD). The

BOOTP daemon responds to client requests for boot

information using information contained in a BOOTP

machine file.

bridge. A router that connects two or more networks

and forwards packets among them. The operations

carried out by a bridge are done at the physical layer

and are transparent to TCP/IP and TCP/IP routing. A

functional unit that connects two local area networks

(LANs) that use the same logical link control (LLC)

procedures but may use different medium access

control (MAC) procedures.

broadband. Characteristic of any network that

multiplexes multiple, independent network carriers onto

a single cable. This is usually done using frequency

division multiplexing. Broadband technology allows

several networks to coexist on one single cable; traffic

from one network does not interfere with traffic from

another, because the “conversations” happen on

different frequencies in the ether, similar to a

commercial radio system.

broadcast. The simultaneous transmission of data

packets to all nodes on a network or subnetwork.

broadcast address. An address that is common to all

nodes on a network.

Glossary 263

BSD. Berkeley Software Distribution.

bus topology. A network configuration in which only

one path is maintained between stations. Any data

transmitted by a station is concurrently available to all

other stations on the link.

byte-ordering. The method of sorting bytes under

specific machine architectures. Of the two common

methods, little endian byte ordering places the least

significant byte first. This method is used in Intel**

microprocessors. In the second method, big endian byte

ordering, the most significant byte is placed first. This

method is used in Motorola microprocessors.

Byte File System (BFS). A file system in which a file

consists of an ordered sequence of bytes rather than

records. BFS files can be organized into hierarchical

directories. Byte file systems are enrolled as file spaces

in CMS file pools.

C

Carrier Sense Multiple Access with Collision

Detection (CSMA/CD). The access method used by

local area networking technologies such as Ethernet.

case-sensitive. A condition in which entries for an

entry field must conform to a specific lowercase,

uppercase, or mixed-case format to be valid.

CCITT. Comite Consultatif International Telegraphique

et Telephonique.

CEC.. Central Electronics Complex.

channel. A path in a system that connects a processor

and main storage with an I/O device.

channel-attached. pertaining to attachment of devices

directly by data channels (I/O channels)to a computer.

Pertaining to devices attached to a controlling unit by

cables, rather than by telecommunication lines.

Synonymous with local, locally attached.

checksum. The sum of a group of data associated

with the group and used for checking purposes.

CICS®. Customer Information Control System.

Class A network. An internet network in which the

high-order bit of the address is 0. The host number

occupies the three, low-order octets.

Class B network. An internet network in which the

high-order bit of the address is 1, and the next

high-order bit is 0. The host number occupies the two

low-order octets.

Class C network. An internet network in which the

two high-order bits of the address are 1 and the next

high-order bit is 0. The host number occupies the

low-order octet.

CLAW. Common Link Access to Workstation.

client. A function that requests services from a server,

and makes them available to the user. In z/OS, an

address space that is using TCP/IP services.

client-server model. A common way to describe

network services and the model user processes

(programs) of those services. Examples include the

name server and resolver paradigm of the DNS and file

server/file client relationships such as NFS and diskless

hosts.

client-server relationship. Any device that provides

resources or services to other devices on a network is a

server. Any device that employs the resources provided

by a server is a client. A machine can run client and

server processes at the same time.

CLIST. Command List.

CLPA. Create Link Pack Area.

CMS. Conversational Monitor System.

Comite Consultatif International Telegraphicque et

Telephonique (CCITT). The International Telegraph

and Telephone Consultative Committee. A unit of the

International Telecommunications Union (ITU) of the

United Nations. CCITT produces technical standards,

known as “recommendations,” for all internationally

controlled aspects of analog and digital communication.

command. The name and any parameters associated

with an action that can be performed by a program. The

command is entered by the user; the computer performs

the action requested by the command name.

Command List (CLIST). A list of commands and

statements designed to perform a specific function for

the user.

command prompt. A displayed symbol, such as [C:\]

that requests input from a user.

Common Link Access to Workstation (CLAW). A

continuously executing duplex channel program

designed to minimize host interrupts while maximizing

channel utilization.

communications adapter. A hardware feature that

enables a computer or device to become a part of a

data network.

community name. A password used by hosts running

Simple Network Management Protocol (SNMP) agents

to access remote network management stations.

compile. To translate a program written in a high-level

language into a machine language program. The

computer actions required to transform a source file into

an executable object file.

264 z/VM: TCP/IP Diagnosis Guide

compiler. A program that translates a source program

into an executable program (an object program).

Computer and Science Network (CSNET). A large

computer network, mostly in the U.S. but with

international connections. CSNET sites include

universities, research labs, and some commercial

companies. It is now merged with BITNET to form

CREN. See BITNET.

connection. An association established between

functional units for conveying information. The path

between two protocol modules that provides reliable

stream delivery service. In an internet, a connection

extends from a TCP module on one machine to a TCP

module on the other.

Control Program (CP). The z/VM operating system

that manages the real processor’s resources and is

responsible for simulating select operating systems,

known as virtual machines for individual users. Each

virtual machine is the functional equivalent of a real

machine.

conversational monitor system (CMS). A virtual

machine operating system that provides general

interactive time sharing, problem solving, and program

development capabilities, and operates only under

control of the z/VM control program.

Corporation for Research and Educational

Networking (CREN). A large computer network

formed from the merging of BITNET and CSNET. See

BITNET and CSNET.

CP. Control Program.

Create Link Pack Area (CLPA). A parameter specified

at startup, which says to create the link pack area.

CREN. Corporation for Research and Educational

Networking.

CSMA/CD. Carrier Sense Multiple Access with

Collision Detection.

CSNET. Computer and Science Network.

Customer Information Control System (CICS). An

IBM-licensed program that enables transactions entered

at remote terminals to be processed concurrently by

user written application programs. It includes facilities

for building, using, and maintaining databases.

D

daemon. A background process usually started at

system initialization that runs continuously and performs

a function required by other processes. Some daemons

are triggered automatically to perform their task; others

operate periodically.

DASD. Direct Access Storage Device.

DARPA. Defense Advanced Research Projects

Agency.

DATABASE 2 (DB2®). An IBM relational database

management system for the z/OS operating system.

database administrator (DBA). An individual or group

responsible for the rules by which data is accessed and

stored. The DBA is usually responsible for database

integrity, security, performance and recovery.

datagram. A basic unit of information that is passed

across the internet, it consists of one or more data

packets.

data link layer. Layer 2 of the OSI (Open Systems

Interconnection) model; it defines protocols governing

data packetizing and transmission into and out of each

node.

data set. The major unit of data storage and retrieval

in z/OS, consisting of a collection of data in one of

several prescribed arrangements and described by

control information to which the system has access.

Synonymous with file in z/VM.

DB2. DATABASE 2.

DBA. Database administrator.

DBCS. Double Byte Character Set.

DDN. Defense Data Network.

decryption. The unscrambling of data using an

algorithm that works under the control of a key. The key

allows data to be protected even when the algorithm is

unknown. Data is unscrambled after transmission.

default. A value, attribute, or option that is assumed

when none is explicitly specified.

Defense Advanced Research Projects Agency

(DARPA). The U.S. government agency that funded

the ARPANET.

Defense Data Network (DDN). Comprises the

MILNET and several other Department of Defense

networks.

destination node. The node to which a request or

data is sent.

DHCPD. Dynamic Host Configuration Protocol

Daemon.

Direct Access Storage Device (DASD). A device in

which access to data is independent of where data

resides on the device.

directory. A named grouping of files in a file system.

Glossary 265

Disk Operating System (DOS). An operating system

for computer systems that use disks and diskettes for

auxiliary storage of programs and data.

display terminal. An input/output unit by which a user

communicates with a data-processing system or

sub-system. Usually includes a keyboard and always

provides a visual presentation of data; for example, an

IBM 3179 display.

Distributed Program Interface (DPI). A programming

interface that provides an extension to the function

provided by the SNMP agents.

DLL. Dynamic Link Library.

DNS. Domain Name System.

domain. In an internet, a part of the naming hierarchy.

Syntactically, a domain name consists of a sequence of

names (labels) separated by periods (dots).

Domain Name System (DNS). A system in which a

resolver queries name servers for resource records

about a host.

domain naming. A hierarchical system for naming

network resources.

DoS. Denial-of-Service.

DOS. Disk Operating System.

dotted-decimal notation. The syntactic representation

for a 32-bit integer that consists of four 8-bit numbers,

written in base 10 and separated by periods (dots).

Many internet application programs accept dotted

decimal notations in place of destination machine

names.

double-byte character set (DBCS). A set of

characters in which each character is represented by

two bytes. Languages such as Japanese, Chinese,

Korean, which contain more symbols than can be

represented by 256 code points, require double-byte

character sets. Because each character requires 2

bytes, the typing, display, and printing of DBCS

characters requires hardware and programs that support

DBCS.

doubleword. A contiguous sequence of bits or

characters that comprises two computer words and is

capable of being addressed as a unit.

DPI. Distributed Program Interface.

Dynamic Host Configuration Protocol Daemon

(DHCPD). The DHCP daemon (DHCPD server)

responds to client requests for boot information using

information contained in a DHCP machine file. This

information includes the IP address of the client, the IP

address of the TFTP daemon, and information about the

files to request from the TFTP daemon.

dynamic resource allocation. An allocation technique

in which the resources assigned for execution of

computer programs are determined by criteria applied at

the moment of need.

dynamic link library (DLL). A module containing

dynamic link routines that is linked at load or run time.

E

EBCDIC. Extended binary-coded decimal interchange

code.

EGP. Exterior Gateway Protocol.

encapsulation. A process used by layered protocols in

which a lower-level protocol accepts a message from a

higher-level protocol and places it in the data portion of

the low-level frame. As an example, in Internet

terminology, a packet would contain a header from the

physical layer, followed by a header from the network

layer (IP), followed by a header from the transport layer

(TCP), followed by the application protocol data.

encryption. The scrambling or encoding of data using

an algorithm that works under the control of a key. The

key allows data to be protected even when the

algorithm is unknown. Data is scrambled prior to

transmission.

ES/9370 Integrated Adapters. An adapter you can

use in TCP/IP for z/VM to connect into Token-Ring

networks and Ethernet networks, as well as TCP/IP

networks that support X.25 connections.

Ethernet. The name given to a local area

packet-switched network technology invented in the

early 1970s by Xerox**, Incorporated. Ethernet uses a

Carrier Sense Multiple Access/Collision Detection

(CSMA/CD) mechanism to send packets.

EXEC. In a VM operating system, a user-written

command file that contains CMS commands, other

user-written commands, and execution control

statements, such as branches.

extended binary-coded decimal interchange code

(EBCDIC). A coded character set consisting of 8-bit

coded characters.

extended character. A character other than a 7-bit

ASCII character. An extended character can be a 1-bit

code point with the 8th bit set (ordinal 128-255) or a

2-bit code point (ordinal 256 and greater).

Exterior Gateway Protocol (EGP). A reachability

routing protocol used by gateways in a two-level

internet.

eXternal Data Representation (XDR). A standard

developed by Sun Microsystems, Incorporated for

representing data in machine-independent format.

266 z/VM: TCP/IP Diagnosis Guide

F

FAT. File Allocation Table.

FDDI. Fiber Distributed Data Interface. Also used to

abbreviate Fiber Optic Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). The ANSI

standard for high-speed transmission over fiber optic

cable.

Fiber Optic Network. A network based on the

technology and standards that define data transmission

using cables of glass or plastic fibers carrying visible

light. Fiber optic network advantages are: higher

transmission speeds, greater carrying capacity, and

lighter, more compact cable.

file. In z/VM, a named set of records stored or

processed as a unit. Synonymous with data set in z/OS.

File Allocation Table (FAT). A table used to allocate

space on a disk for a file.

File Transfer Access and Management (FTAM). An

application service element that enables user

application processes to manage and access a file

system, which may be distributed.

File Transfer Protocol (FTP). A TCP/IP protocol used

for transferring files to and from foreign hosts. FTP also

provides the capability to access directories. Password

protection is provided as part of the protocol.

foreign host. Any machine on a network that can be

interconnected.

foreign network. In an internet, any other network

interconnected to the local network by one or more

intermediate gateways or routers.

foreign node. See foreign host.

Fraggle. A denial-of-service attack in which a UDP

Echo Request is sent to a broadcast or multicast

address.

frame. The portion of a tape on a line perpendicular to

the reference edge, on which binary characters can be

written or read simultaneously.

FTAM. File Transfer Access and Management.

FTP. File Transfer Protocol.

fullword. A computer word: 32 bits or 4 bytes.

G

gadget. A windowless graphical object that looks like

its equivalent like-named widget but does not support

the translations, actions, or pop-up widget children

supplied by that widget.

gateway. A functional unit that interconnects a local

data network with another network having different

protocols. A host that connects a TCP/IP network to a

non-TCP/IP network at the application layer. See also

274.

gather and scatter data. Two related operations.

During the gather operation, data is taken from multiple

buffers and transmitted. In the scatter operation, data is

received and stored in multiple buffers.

GC. Graphics Context.

GContext. See Graphics Context.

GCS. Group Control System.

GDDM. Graphical Data Display Manager.

GDDMXD. Graphical Data Display Manager interface

for X Window System. A graphical interface that formats

and displays alphanumeric, data, graphics, and images

on workstation display devices that support the X

Window System.

GDF. Graphics data file.

Graphical Display Data Manager (GDDM). A group of

routines that allows pictures to be defined and displayed

procedurally through function routines that correspond

to graphic primitives.

Graphics Context (GC). The storage area for

graphics output. Also known as GC and GContext. Used

only with graphics that have the same root and depth as

the graphics content.

Group Control System (GCS) . A component of

VM/ESA, consisting of a shared segment that you can

Initial Program Load (IPL) and run in a virtual machine.

It provides simulated z/OS or OS/390® services and

unique supervisor services to help support a native SNA

network.

H

handle. A temporary data representation that identifies

a file.

halfword. A contiguous sequence of bits or characters

that constitutes half a fullword and can be addressed as

a unit.

HASP. Houston automatic spooling priority system.

HDLC. High-level Data Link Control.

header file. A file that contains constant declarations,

type declarations, and variable declarations and

assignments. Header files are supplied with all

programming interfaces.

Glossary 267

High-level Data Link Control (HDLC). An ISO

protocol for X.25 international communication.

High Performance File System (HPFS). An OS/2 file

management system that supports high-speed buffer

storage, long file names, and extended attributes.

HiperSockets™. A hardware feature that provides high

performance internal communications between LPARs

within the same CEC.

hop count. The number of gateways or routers

through which a packet passes on its way to its

destination.

host. A computer connected to a network, which

provides an access method to that network. A host

provides end-user services and can be a client, a

server, or a client and server simultaneously.

Houston automatic spooling priority system

(HASP). A computer program that provides

supplementary job management, data management,

and task management functions such as control of job

flow, ordering of tasks, and spooling.

HPFS. High Performance File System.

HYPERchannel Adapter. A network interface used to

connect a TCP/IP for z/VM or z/OS host into an existing

TCP/IP HYPERchannel network, or to connect TCP/IP

hosts together to create a TCP/IP HYPERchannel

network.

I

IAB. Internet Activities Board.

ICMP. Internet Control Message Protocol.

IEEE. Institute of Electrical and Electronic Engineers.

IETF. Internet Engineering Task Force.

IGMP. Internet Group Management Protocol (IGMP).

IGP. Interior Gateway Protocol.

include file. A file that contains preprocessor text,

which is called by a program, using a standard

programming call. Synonymous with header file.

IMAP. Internet Message Access Protocol..

IMS™. Information Management System.

Information Management System (IMS). A

database/data communication (DB/DC) system that can

manage complex databases and networks.

initial program load (IPL). The initialization procedure

that causes an operating system to commence

operation.

instance. Indicates a label that is used to distinguish

among the variations of the principal name. An instance

allows for the possibility that the same client or service

can exist in several forms that require distinct

authentication.

Institute of Electrical and Electronic Engineers

(IEEE). An electronics industry organization.

Integrated Services Digital Network (ISDN). A digital,

end-to-end telecommunication network that supports

multiple services including, but not limited to, voice and

data.

interactive. Pertaining to a program or a system that

alternately accepts input and then responds. An

interactive system is conversational; that is, a

continuous dialog exists between user and system. See

batch.

Interior Gateway Protocol (IGP). The protocol used

to exchange routing information between collaborating

routers in the Internet. RIP is an example of an IGP.

Internet. The largest internet in the world consisting of

large national backbone nets (such as MILNET,

NSFNET, and CREN) and a myriad of regional and local

campus networks all over the world. The Internet uses

the Internet protocol suite. To be on the Internet, you

must have IP connectivity (be able to TELNET to, or

PING, other systems). Networks with only electronic

mail connectivity are not actually classified as being on

the Internet.

Internet Activities Board (IAB). The technical body

that oversees the development of the Internet suite of

protocols (commonly referred to as TCP/IP). It has two

task forces (the IRTF and the IETF) each charged with

investigating a particular area.

Internet address. A 32-bit address assigned to hosts

using TCP/IP. An internet address consists of a network

number and a local address. Internet addresses are

represented in a dotted-decimal notation and are used

to route packets through the network.

Internet Engineering Task Force (IETF). One of the

task forces of the IAB. The IETF is responsible for

solving short-term engineering needs of the Internet.

International Organization for Standardization

(ISO). An organization of national standards bodies

from various countries established to promote

development of standards to facilitate international

exchange of goods and services, and develop

cooperation in intellectual, scientific, technological, and

economic activity.

internet or internetwork. A collection of packet

switching networks interconnected by gateways, routers,

bridges, and hosts to function as a single, coordinated,

virtual network.

268 z/VM: TCP/IP Diagnosis Guide

internet address. The unique 32-bit address

identifying each node in an internet. See also 261.

Internet Control Message Protocol (ICMP). The part

of the Internet Protocol layer that handles error

messages and control messages.

Internet Group Management Protocol (IGMP). IGMP

is used by IP hosts to report their host group

memberships to multicast routers.

Internet Protocol (IP). The TCP/IP layer between the

higher level host-to-host protocol and the local network

protocols. IP uses local area network protocols to carry

packets, in the form of datagrams, to the next gateway,

router, or destination host.

interoperability. The capability of different hardware

and software by different vendors to effectively

communicate together.

Inter-user communication vehicle (IUCV). A VM

facility for passing data between virtual machines and

VM components.

intrinsics X-Toolkit. A set management mechanism

that provides for constructing and interfacing between

composite X Window widgets, their children, and other

clients. Also, intrinsics provide the ability to organize a

collection of widgets into an application.

IP. Internet Protocol.

IP datagram. The fundamental unit of information

passed across the Internet. An IP datagram contains

source and destination addresses along with data and a

number of fields that define such things as the length of

the datagram, the header checksum, and flags to say

whether the datagram can be (or has been) fragmented.

IPL. Initial Program Load.

ISDN. Integrated Services Digital Network.

ISO. International Organization for Standardization.

IUCV. Inter-User Communication Vehicle.

J

JCL. Job Control Language.

JES. Job Entry Subsystem.

JIS. Japanese Institute of Standards.

Job Control Language (JCL). A problem-oriented

language designed to express statements in a job that

are used to identify the job or describe its requirements

to an operating system.

Job Entry Subsystem (JES). An IBM licensed

program that receives jobs into the system and

processes all output data produced by the jobs.

JUNET. The Japanese Academic and Research

Network that connects various UNIX operating systems.

K

Kanji. A graphic character set consisting of symbols

used in Japanese ideographic alphabets. Each

character is represented by 2 bytes.

katakana. A character set of symbols used on one of

the two common Japanese phonetic alphabets, which is

used primarily to write foreign words phonetically. See

also 269.

Kerberos. A system that provides authentication

service to users in a network environment.

Kerberos Authentication System. An authentication

mechanism used to check authorization at the user

level.

Kiss-of-Death (KOD). An IGMP based

denial-of-service attack that depletes the stack’s large

envelopes. See KOX.

KOD. Kiss-of-Death.

KOX. An IGMP based denial-of-service attack that

depletes the stack’s large envelopes and also has

source IP address spoofing. KOX is a version of the

Kiss-of-Death (KOD) attack.

L

LaMail. The client that communicates with the OS/2

Presentation Manager to manage mail on the network.

LAN. Local area network.

Land. A denial-of-service attack in which the TCP/IP

stack is flooded with SYN packets that have spoofed

source IP addresses and port numbers that match the

destination IP addresses and port numbers. See Blat.

Line Printer Client (LPR). A client command that

allows the local host to submit a file to be printed on a

remote print server.

Line Printer Daemon (LPD). The remote printer

server that allows other hosts to print on a printer local

to your host.

little-endian. A format for storage or transmission of

binary data in which the least significant bit (or byte)

comes first. The reverse convention is big-endian.

Glossary 269

local area network (LAN). A data network located on

the user’s premises in which serial transmission is used

for direct data communication among data stations.

local host. In an internet, the computer to which a

user’s terminal is directly connected without using the

internet.

local network. The portion of a network that is

physically connected to the host without intermediate

gateways or routers.

logical character delete symbol. A special editing

symbol, usually the at (@) sign, which causes CP to

delete it and the immediately preceding character from

the input line. If many delete symbols are consecutively

entered, the same number of preceding characters are

deleted from the input line.

Logical Unit (LU). An entity addressable within an

SNA-defined network. LUs are categorized by the types

of communication they support.

LPD. Line Printer Daemon.

LPR. Line Printer Client.

LU. Logical Unit.

LU-LU session. In SNA, a session between two

logical units (LUs). It provides communication between

two end users, or between an end user and an LU

services component.

LU type. In SNA, the classification of an LU-LU

session in terms of the specific subset of SNA protocols

and options supported by the logical units (LUs) for that

session.

M

MAC. Media Access Control.

mail gateway. A machine that connects two or more

electronic mail systems (often different mail systems on

different networks) and transfers messages between

them.

Management Information Base (MIB). A standard

used to define SNMP objects, such as packet counts

and routing tables, that are in a TCP/IP environment.

mapping. The process of relating internet addresses

to physical addresses in the network.

mask. A pattern of characters used to control retention

or elimination of portions of another pattern of

characters. To use a pattern of characters to control

retention or elimination of another pattern of characters.

A pattern of characters that controls the keeping,

deleting, or testing of portions of another pattern of

characters.

Maximum Transmission Unit (MTU). The largest

possible unit of data that can be sent on a given

physical medium.

media access control (MAC). The method used by

network adapters to determine which adapter has

access to the physical network at a given time.

Message Handling System (MHS). The system of

message user agents, message transfer agents,

message stores, and access units that together provide

OSI electronic mail.

MHS. Message Handling System.

MIB. Management Information Base.

microcode. A code, representing the instructions of an

instruction set, which is implemented in a part of

storage that is not program-addressable.

MILNET. Military Network.

Military Network (MILNET). Originally part of the

ARPANET, MILNET was partitioned in 1984 to make it

possible for military installations to have reliable network

service, while the ARPANET continued to be used for

research. See DDN.

minidisk. Logical divisions of a physical direct access

storage device.

modem (modulator/demodulator). A device that

converts digital data from a computer to an analog

signal that can be transmitted on a telecommunication

line, and converts the analog signal received to data for

the computer.

Motif. see OSF/Motif.

mouse. An input device that is used to move a pointer

on the screen and select items.

MPRoute. Multiple Protocol Routing. Implements the

OSPF protocol described in RFC 1583, 1058, and 1723.

MTU. Maximum Transmission Unit.

multicast. The simultaneous transmission of data

packets to a group of selected nodes on a network or

subnetwork.

multiconnection server. A server that is capable of

accepting simultaneous, multiple connections.

Multiple Virtual Storage (MVS). Implies the

MVS/ESA™, and follow-on OS/390 and z/OS products.

multitasking. A mode of operation that provides for

the concurrent performance execution of two or more

tasks.

MVS. Multiple Virtual Storage.

270 z/VM: TCP/IP Diagnosis Guide

N

name server. The server that stores resource records

about hosts.

National Science Foundation (NSF). Sponsor of the

NSFNET.

National Science Foundation Network (NSFNET). A

collection of local, regional, and mid-level networks in

the U.S. tied together by a high-speed backbone.

NSFNET provides scientists access to a number of

supercomputers across the country.

NCP. Network Control Program.

NDB. Network Database.

NDIS. Network Driver Interface Specification.

Netman. This device keyword specifies that this device

is a 3172 LAN Channel Station that supports IBM

Enterprise-Specific SNMP Management Information

Base (MIB) variables for 3172. TCP/IP for VM supports

SNMP GET and SNMP GETNEXT operations to request

and retrieve 3172 Enterprise-Specific MIB variables.

These requests are answered only by those 3172

devices with the NETMAN option in the PROFILE

TCPIP file.

NetView®. A system 390-based, IBM-licensed program

used to monitor, manage, and diagnose the problems of

a network.

network. An arrangement of nodes and connecting

branches. Connections are made between data

stations. Physical network refers to the hardware that

makes up a network. Logical network refers to the

abstract organization overlaid on one or more physical

networks. An internet is an example of a logical

network.

network adapter. A physical device, and its

associated software, that enables a processor or

controller to be connected to a network.

network administrator. The person responsible for

the installation, management, control, and configuration

of a network.

Network Control Program (NCP). An IBM-licensed

program that provides communication controller support

for single-domain, multiple-domain, and interconnected

network capability.

network database (NDB). An IBM-licensed program

that provides communication controller support for

single-domain, multiple-domain, and interconnected

network capability. NDB allows interoperability among

different database systems, and uses RPC protocol with

a client/server type of relationship. NDB is used for data

conversion, security, I/O buffer management, and

transaction management.

Network Driver Interface Specification (NDIS). An

industry-standard specification used by applications as

an interface with network adapter device drivers.

network elements. As defined in the SNMP

architecture, network elements are gateways, routers,

and hosts that contain management agents responsible

for performing the network management functions

requested by the network management stations.

network file system (NFS). The NFS protocol, which

was developed by Sun Microsystems, Incorporated,

allows computers in a network to access each other’s

file systems. Once accessed, the file system appears to

reside on the local host.

Network Information Center (NIC). Originally there

was only one, located at SRI International and tasked to

serve the ARPANET (and later DDN) community. Today,

there are many NICs operated by local, regional, and

national networks all over the world. Such centers

provide user assistance, document service, training, and

more.

Network Job Entry (NJE). In object distribution, an

entry in the network job table that specifies the system

action required for incoming network jobs sent by a

particular user or group of users. Each entry is identified

by the user ID of the originating user or group.

network layer. Layer 3 of the Open Systems

Interconnection (OSI) model; it defines protocols

governing data routing.

network management stations. As defined in the

SNMP architecture, network management stations, or

SNMP clients, execute management applications that

monitor and control network elements.

NFS. Network file system.

NIC. Network Information Center.

NJE. Network Job Entry.

node. In a network, a point at which one or more

functional units connect channels or data circuits. In a

network topology, the point at an end of a branch.

nonblocking mode. If the execution of the program

cannot continue until some event occurs, the operating

system does not suspend the program until that event

occurs. Instead, the operating system returns an error

message to the program.

NPSI. X.25 NCP Packet Switching Interface.

NSF. National Science Foundation.

NSFNET. National Science Foundation Network.

Glossary 271

O

octet. A byte composed of eight binary elements.

Offload host. Any device that is handling the TCP/IP

processing for the z/OS host where TCP/IP for MVS is

installed. Currently, the only supported Offload host is

the 3172-3.

Offload system. Represents both the z/OS host

where TCP/IP for z/OS is installed and the Offload host

that is handling the TCP/IP Offload processing.

open system. A system with specified standards and

that therefore can be readily connected to other

systems that comply with the same standards.

Open Systems Interconnection (OSI). The

interconnection of open systems in accordance with

specific ISO standards. The use of standardized

procedures to enable the interconnection of data

processing systems.

Operating System/2 (OS/2). Pertaining to the IBM

licensed program that can be used as the operating

system for personal computers. The OS/2 licensed

program can perform multiple tasks at the same time.

OS/2. Operating System/2.

OSF/Motif. OSF/Motif is an X Window System toolkit

defined by Open Software Foundation, Inc. (OSF),

which enables the application programmer to include

standard graphic elements that have a 3-D appearance.

Performance of the graphic elements is increased with

gadgets and windowless widgets.

OSI. Open Systems Interconnection.

OSPF. Open Shortest Path First. An Interior Gateway

Protocol that distributes routing information within a

single Autonomous System.

out-of-band data. Data that is placed in a secondary

channel for transmission. Primary and secondary

communication channels are created physically by

modulation on a different frequency, or logically by

specifying a different logical channel. A primary channel

can have a greater capacity than a secondary one.

OV. OfficeVision®.

P

packet. A sequence of binary digits, including data

and control signals, that is transmitted and switched as

a composite whole.

Packet Switching Data Network (PSDN). A network

that uses packet switching as a means of transmitting

data.

parameter. A variable that is given a constant value

for a specified application.

parse. To analyze the operands entered with a

command.

passive open. The state of a connection that is

prepared to provide a service on demand. Contrast with

active open.

Partitioned data set (PDS). A data set in direct

access storage that is divided into partitions, called

members, each of which can contain a program, part of

a program, or data.

PC. Personal computer.

PCA. Personal Channel Attach.

PC Network. A low-cost, broadband network that

allows attached IBM personal computers, such as IBM

5150 Personal Computers, IBM Computer ATs, IBM

PC/XTs, and IBM Portable Personal Computers to

communicate and to share resources.

PDS. Partitioned data set.

PDN. Public Data Network.

PDU. Protocol data unit.

peer-to-peer. In network architecture, any functional

unit that resides in the same layer as another entity.

Personal Channel Attach (PCA). see Personal

System Channel Attach.

Personal Computer (PC). A microcomputer primarily

intended for stand-alone use by an individual.

physical layer. Layer 1 of the Open Systems

Interconnection (OSI) model; it details protocols

governing transmission media and signals.

physical unit (PU). In SNA, the component that

manages and monitors the resources, such as attached

links and adjacent link stations, associated with a node,

as requested by an SSPC via an SSPC-PU session. An

SSPC activates a session with the physical unit in order

to indirectly manage, through the PU, resources of the

node such as attached links.

PING. The command that sends an ICMP Echo

Request packet to a host, gateway, or router with the

expectation of receiving a reply.

Ping-o-Death (POD). A denial-of-service attack in

which huge, fragmented ICMP packets are sent.

PM. Presentation Manager.

PMANT. In OS/2, the 3270 client terminal emulation

program that is invoked by the PMANT command.

272 z/VM: TCP/IP Diagnosis Guide

polling. On a multipoint connection or a point-to-point

connection, the process whereby data stations are

invited one at a time to transmit. Interrogation of devices

for such purposes as to avoid contention, to determine

operational status, or to determine readiness to send or

receive data.

POP. Post Office Protocol.

port. An endpoint for communication between devices,

generally referring to a logical connection. A 16-bit

number identifying a particular Transmission Control

Protocol or User Datagram Protocol resource within a

given TCP/IP node.

PORTMAP. Synonymous with Portmapper.

Portmapper. A program that maps client programs to

the port numbers of server programs. Portmapper is

used with Remote Procedure Call (RPC) programs.

Post Office Protocol (POP). A protocol used for

exchanging network mail.

presentation layer. Layer 6 of the Open Systems

Interconnections (OSI) model; it defines protocols

governing data formats and conversions.

Presentation Manager (PM). A component of OS/2

that provides a complete graphics-based user interface,

with pull-down windows, action bars, and layered

menus.

principal name. Specifies the unique name of a user

(client) or service.

PostScript. A standard that defines how text and

graphics are presented on printers and display devices.

process. A unique, finite course of events defined by

its purpose or by its effect, achieved under defined

conditions. Any operation or combination of operations

on data. A function being performed or waiting to be

performed. A program in operation; for example, a

daemon is a system process that is always running on

the system.

Professional Office Systems (PROFS®). IBM’s

proprietary, integrated office management system used

for sending, receiving, and filing electronic mail, and a

variety of other office tasks. PROFS has been replaced

by OfficeVision. See OfficeVision.

PROFS. Professional Office Systems.

protocol. A set of semantic and syntactic rules that

determines the behavior of functional units in achieving

communication. Protocols can determine low-level

details of machine-to-machine interfaces, such as the

order in which bits from a byte are sent; they can also

determine high-level exchanges between application

programs, such as file transfer.

Protocol data unit (PDU). A set of commands used

by the SNMP agent to request management station

data.

protocol suite. A set of protocols that cooperate to

handle the transmission tasks for a data communication

system.

PSDN. Packet Switching Data Network.

PU. Physical unit.

Public Data Network (PDN). A network established

and operated by a telecommunication administration or

by a Recognized Private Operating Agency (RPOA) for

the specific purpose of providing circuit-switched,

packet-switched, and leased-circuit services to the

public.

Q

QDIO. Queued Direct I/O.

queue. A line or list formed by items in a system

waiting for service; for example, tasks to be performed

or messages to be transmitted. To arrange in, or form, a

queue.

R

R4P3D. A denial-of-service attack in which TCP

packets are sent to the stack with no header flags set.

R4P3D is an augmented version of the Stream attack.

RACF. Resource access control facility.

RARP. Reverse Address Resolution Protocol.

read-only access. An access mode associated with a

virtual disk directory that lets a user read, but not write

or update, any file on the disk directory.

read/write access. An access mode associated with a

virtual disk directory that lets a user read and write any

file on the disk directory (if write authorized).

realm. One of the three parts of a Kerberos name.

The realm specifies the network address of the principal

name or instance. This address must be expressed as a

fully qualified domain name, not as a “dot numeric”

internet address.

recursion. A process involving numerous steps, in

which the output of each step is used for the successive

step.

reduced instruction-set computer (RISC). A

computer that uses a small, simplified set of frequently

used instructions for rapid execution.

Glossary 273

reentrant. The attribute of a program or routine that

allows the same copy of a program or routine to be

used concurrently by two or more tasks.

Remote Execution Protocol (REXEC). A protocol that

allows the execution of a command or program on a

foreign host. The local host receives the results of the

command execution. This protocol uses the REXEC

command.

remote host. A machine on a network that requires a

physical link to interconnect with the network.

remote logon. The process by which a terminal user

establishes a terminal session with a remote host.

Remote Procedure Call (RPC). A facility that a client

uses to request the execution of a procedure call from a

server. This facility includes a library of procedures and

an eXternal data representation.

Remote Spooling Communications Subsystem

(RSCS). An IBM-licensed program that transfers spool

files, commands, and messages between VM users,

remote stations, and remote and local batch systems,

through HASP-compatible telecommunication facilities.

Request For Comments (RFC). A series of

documents that covers a broad range of topics affecting

internetwork communication. Some RFCs are

established as internet standards.

resolver. A program or subroutine that obtains

information from a name server or local table for use by

the calling program.

resource access control facility (RACF). An

IBM-licensed program that provides for access control

by identifying and by verifying the users to the system,

authorizing access to protected resources, logging the

detected unauthorized attempts to enter the system,

and logging the detected accesses to protected

resources.

resource records. Individual records of data used by

the Domain Name System. Examples of resource

records include the following: a host’s Internet Protocol

addresses, preferred mail addresses, and aliases.

response unit (RU). In SNA, a message unit that

acknowledges a request unit. It may contain prefix

information received in a request unit. If positive, the

response unit may contain additional information such

as session parameters in response to BIND SESSION.

If negative, it contains sense data defining the exception

condition.

Restructured Extended Executor (REXX) language.

A general purpose programming language, particularly

suitable for EXEC procedures, XEDIT macros, or

programs for personal computing. Procedures, XEDIT

macros, and programs written in this language can be

interpreted by the Procedures Language VM/REXX

interpreter.

return code. A code used to influence the execution of

succeeding instructions. A value returned to a program

to indicate the results of an operation requested by that

program.

Reverse Address Resolution Protocol (RARP). A

protocol that maintains a database of mappings

between physical hardware addresses and IP

addresses.

REXEC. Remote Execution Protocol.

REXX. Restructured Extended Executor language.

RFC. Request For Comments.

RIP. Routing Information Protocol.

RISC. Reduced instruction-set computer.

ROUTED.. Routing Daemon.

router. A device that connects networks at the ISO

Network Layer. A router is protocol-dependent and

connects only networks operating the same protocol.

Routers do more than transmit data; they also select the

best transmission paths and optimum sizes for packets.

In TCP/IP, routers operate at the Internetwork layer. See

also 267.

Routing Information Protocol (RIP). The protocol

that maintains routing table entries for gateways,

routers, and hosts.

routing table. A list of network numbers and the

information needed to route packets to each.

RPC. Remote Procedure Call.

RSCS. Remote Spooling Communications Subsystem.

RU. Response unit.

S

SAA. Systems Application Architecture.

SBCS. Single Byte Character Set.

Sendmail. The OS/2 mail server that uses Simple Mail

Transfer Protocol to route mail from one host to another

host on the network.

serial line. A network media that is a de facto

standard, not an international standard, commonly used

for point-to-point TCP/IP connections. Generally, a serial

line consists of an RS-232 connection into a modem

and over a telephone line.

274 z/VM: TCP/IP Diagnosis Guide

semantics. The relationships of characters or groups

of characters to their meanings, independent of the

manner of their interpretation and use. The relationships

between symbols and their meanings.

server. A function that provides services for users. A

machine can run client and server processes at the

same time.

SFS. Shared File System.

Shared File System (SFS). A part of CMS that lets

users organize their files into groups known as

directories and selectively share those files and

directories with other users.

Simple Mail Transfer Protocol (SMTP). A TCP/IP

application protocol used to transfer mail between users

on different systems. SMTP specifies how mail systems

interact and the format of control messages they use to

transfer mail.

Simple Network Management Protocol (SNMP). A

protocol that allows network management by elements,

such as gateways, routers, and hosts. This protocol

provides a means of communication between network

elements regarding network resources.

simultaneous peripheral operations online

(SPOOL). (Noun) An area of auxiliary storage defined

to temporarily hold data during its transfer between

peripheral equipment and the processor. (Verb) To use

auxiliary storage as a buffer storage to reduce

processing delays when transferring data between

peripheral equipment and the processing storage of a

computer.

single-byte character set (SBCS). A character set in

which each character is represented by a one-byte

code. Contrast with double-byte character set.

SMI. Structure for Management Information.

SMTP. Simple Mail Transfer Protocol.

Smurf. A denial-of-service attack in which an ICMP

Echo Request is sent to a broadcast or multicast

address. There are three variants of the Smurf attack.

See Smurf-IC, Smurf-OB, and Smurf-RP.

Smurf-IC. A denial-of-service attack in which an ICMP

Echo Request is sent to a broadcast or multicast

address. ″IC″ denotes that incoming packets are using

the TCP/IP stack to launch an attack. See Smurf-OB

and Smurf-RP.

Smurf-OB. A denial-of-service attack in which an

ICMP Echo Request is sent to a broadcast or multicast

address. ″OB″ denotes that an outbound ICMP Echo

Request matched the description of a Smurf attack. See

Smurf-IC and Smurf-RP.

Smurf-RP. A denial-of-service attack in which an ICMP

Echo Request is sent to a broadcast or multicast

address. ″RP″ denotes that the ICMP Echo Reply

packets being received by the stack do not match any

Echo Requests that were sent. See Smurf-IC and

Smurf-OB.

SNA. Systems Network Architecture.

SNALINK. SNA Network Link.

SNA Network Link. An SNA network link function of

TCP/IP for z/VM and OS/390 hosts running TCP/IP to

communicate through an existing SNA backbone.

SNMP. Simple Network Management Protocol.

SOA. Start of authority record.

socket. An endpoint for communication between

processes or applications. A pair consisting of TCP port

and IP address, or UDP port and IP address.

socket address. An address that results when the

port identification number is combined with an internet

address.

socket interface. An application interface that allows

users to write their own applications to supplement

those supplied by TCP/IP.

spoofing. An act of forging and inserting data that is

incorrect or not valid. It is most commonly used in

reference to IP source spoofing, where the source

address in an IP packet header is replaced with a false

one, effectively masking the source of the packet

(making it difficult to trace back to the originator).

SPOOL. Simultaneous peripheral operations online.

spooling. The processing of files created by or

intended for virtual readers, punches, and printers. The

spool files can be sent from one virtual device to

another, from one virtual machine to another, and to

read devices.

SQL. Structured Query Language.

SQL/DS™. Structured Query Language/Data System.

SSL. Secure Sockets Layer. Provides the secure

(encrypted) communication between a remote client and

a TCP/IP server.

start of authority record (SOA). In the Domain Name

System, the resource record that defines a zone.

stream. A continuous sequence of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

Stream. A denial-of-service attack in which TCP

packets are sent to the stack with no header flags set.

See R4P3D.

Glossary 275

Structured Query Language (SQL). Fourth

generation English-like programming language used to

perform queries on relational databases.

Structured Query Language/Data System (SQL/DS).

An IBM relational database management system for the

VM and VSE operating systems.

Structure for Management Information (SMI). The

rules used to define the objects that can be accessed

through a network management protocol. See also 270.

subdirectory. A directory contained within another

directory in a file system hierarchy.

subnet. A networking scheme that divides a single

logical network into smaller physical networks to simplify

routing.

subnet address. The portion of the host address that

identifies a subnetwork.

subnet mask. A mask used in the IP protocol layer to

separate the subnet address from the host portion of

the address.

subnetwork. Synonymous with subnet.

subsystem. A secondary or subordinate system,

usually capable of operating independent of, or

asynchronously with, a controlling system.

SYNC. Synchronous.

synchronous (SYNC). Pertaining to two or more

processes that depend on the occurrences of a specific

event such as common timing signal. Occurring with a

regular or predictable time relationship. See

asynchronous.

SynFlood. A denial-of-service attack in which the

initiator floods the TCP/IP stack with SYN packets that

have spoofed source IP addresses, resulting in the

server never receiving the final ACKs needed to

complete the three-way handshake in the connection

process.

Systems Application Architecture (SAA). A formal

set of rules that enables applications to be run without

modification in different computer environments.

Systems Network Architecture (SNA). The

description of the logical structure, formats, protocols,

and operational sequences for transmitting information

units through, and controlling the configuration and

operation of, networks.

T

TALK. An interactive messaging system that sends

messages between the local host and a foreign host.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet

Protocol

Telnet. The Terminal Emulation Protocol, a TCP/IP

application protocol for remote connection service.

Telnet allows a user at one site to gain access to a

foreign host as if the user’s terminal were connected

directly to that foreign host.

terminal emulator. A program that imitates the

function of a particular kind of terminal.

Terminate and Stay Resident (TSR) program. A TSR

is a program that installs part of itself as an extension of

DOS when it is executed.

TFTPD. Trivial File Transfer Protocol Daemon.

ticket. Encrypted information obtained from a Kerberos

authentication server or a ticket-granting server. A ticket

authenticates a user and, in conjunction with an

authenticator, serves as permission to access a service

when presented by the authenticated user.

ticket-granting server. Grants Kerberos tickets to

authenticated users as permission to access an

end-service.

Time Sharing Option (TSO). An operating system

option; for z/OS, the option provides interactive time

sharing from remote terminals

time stamp. To apply the current system time. The

value on an object that is an indication of the system

time at some critical point in the history of the object. In

query, the identification of the day and time when a

query report was created that query automatically

provides on each report.

TN3270. An informally defined protocol for transmitting

3270 data streams over Telnet.

token. In a local network, the symbol of authority

passed among data stations to indicate the station

temporarily in control of the transmission medium.

token-bus. See bus topology.

token ring. As defined in IEEE 802.5, a

communication method that uses a token to control

access to the LAN. The difference between a token bus

and a token ring is that a token-ring LAN does not use

a master controller to control the token. Instead, each

computer knows the address of the computer that

should receive the token next. When a computer with

the token has nothing to transmit, it passes the token to

the next computer in line.

token-ring network. A ring network that allows

unidirectional data transmission between data stations

by a token-passing procedure over one transmission

medium, so that the transmitted data returns to the

transmitting station.

276 z/VM: TCP/IP Diagnosis Guide

Transmission Control Protocol (TCP). The TCP/IP

layer that provides reliable, process-to-process data

stream delivery between nodes in interconnected

computer networks. TCP assumes that IP (Internet

Protocol) is the underlying protocol.

Transmission Control Protocol/Internet Protocol

(TCP/IP). A suite of protocols designed to allow

communication between networks regardless of the

technologies implemented in each network.

transport layer. Layer 4 of the Open Systems

Interconnection (OSI) model; it defines protocols

governing message structure and some error checking.

TRAP. An unsolicited message that is sent by an

SNMP agent to an SNMP network management station.

Trivial File Transfer Protocol Daemon (TFTPD). The

TFTP daemon (TFTPD server) transfers files between

the Byte File System (BFS) and TFTP clients. TFTPD

supports access to files maintained in a BFS directory

structure that is mounted.

TSO. Time Sharing Option.

TSR. Terminate and stay resident. TSR usually refers

to a terminate-and-stay-resident program.

U

UDP. User Datagram Protocol.

user. A function that uses the services provided by a

server. A host can be a user and a server at the same

time. See client.

User Datagram Protocol (UDP). A datagram level

protocol built directly on the IP layer. UDP is used for

application-to-application programs between TCP/IP

hosts.

user exit. A point in an IBM-supplied program at which

a user routine may be given control.

user profile. A description of a user, including user ID,

user name, defaults, password, access authorization,

and attributes.

V

virtual address. The address of a location in virtual

storage. A virtual address must be translated into a real

address to process the data in processor storage.

Virtual Machine (VM). Licensed software whose full

name is Virtual Machine/Enterprise Systems

Architecture (VM/ESA) It is a software operating system

that manages the resources of a real processor to

provide virtual machines to end users. It includes

time-sharing system control program (CP), the

conversational monitor system (CMS), the group control

system (GCS), and the dump viewing facility (DVF).

Virtual Machine Communication Facility (VMCF). A

connectionless mechanism for communication between

address spaces.

VM. Virtual machine.

virtual storage. Storage space that can be regarded

as addressable main storage by the user of a computer

system in which virtual addresses are mapped into real

addresses. The size of virtual storage is limited by the

addressing scheme of the computing system and by the

amount of auxiliary storage available, not by the actual

number of main storage locations.

Virtual Telecommunications Access Method

(VTAM). An IBM-licensed program that controls

communication and the flow of data in an SNA network.

It provides single-domain, multiple-domain, and

interconnected network capability.

VM. Virtual Machine.

VMCF. Virtual Machine Communication Facility.

VM/ESA. Virtual Machine/Enterprise System

Architecture

VMSES/E. Virtual Machine Serviceability

Enhancements Staged/Extended.

VTAM. Virtual Telecommunications Access Method.

W

WAN. Wide area network.

well-known port. A port number that has been

preassigned for specific use by a specific protocol or

application. Clients and servers using the same protocol

communicate over the same well-known port.

wide area network (WAN). A network that provides

communication services to a geographic area larger

than that served by a local area network.

widget. The basic data type of the X Window System

Toolkit. Every widget belongs to a widget class that

contains the allowed operations for that corresponding

class.

window. An area of the screen with visible boundaries

through which a panel or portion of a panel is displayed.

working directory. The directory in which an

application program is found. The working directory

becomes the current directory when the application is

started.

Glossary 277

X

X Client. An application program which uses the X

protocol to communicate windowing and graphics

requests to an X Server.

XDR. eXternal Data Representation.

XEDIT. The CMS facility, containing the XEDIT

command and XEDIT subcommands and macros, that

lets a user create, change, and manipulate CMS files.

X Server. A program which interprets the X protocol

and controls one or more screens, a pointing device, a

keyboard, and various resources associated with the X

Window System, such as Graphics Contexts, Pixmaps,

and color tables.

X Window System. The X Window System is a

protocol designed to support network transparent

windowing and graphics. TCP/IP for z/VM and OS/390

provides client support for the X Window System

application program interface.

X Window System API. An application program

interface designed as a distributed, network-transparent,

device-independent, windowing and graphics system.

X Window System Toolkit. Functions for developing

application environments.

X.25. A CCITT communication protocol that defines the

interface between data terminal equipment and packet

switching networks.

X.25 NCP Packet Switching Interface (X.25 NPSI).

An IBM-licensed program that allows users to

communicate over packet switched data networks that

have interfaces complying with Recommendation X.25

(Geneva** 1980) of the CCITT. It allows SNA programs

to communicate with SNA equipment or with non-SNA

equipment over such networks.

Z

ZAP. To modify or dump an individual text file/data set

using the ZAP command or the ZAPTEXT EXEC.

zone. In the Domain Name System, a zone is a logical

grouping of domain names that is assigned to a

particular organization. Once an organization controls its

own zone, it can change the data in the zone, add new

tree sections connected to the zone, delete existing

nodes, or delegate new subzones under its zone.

278 z/VM: TCP/IP Diagnosis Guide

Bibliography

This bibliography lists the books in the z/VM

product library. For abstracts of these books and

information about current editions and available

media, see z/VM: General Information.

Where to Get z/VM Books

z/VM books are available from the following

sources:

v IBM Publications Center at

www.ibm.com/shop/publications/order/

v z/VM Internet Library at

www.ibm.com/eserver/zseries/zvm/library/

v IBM Online Library: z/VM Collection, SK2T-2067

v IBM Online Library: z/VM Collection on DVD,

SK5T-7054

z/VM Base Library

The following books describe the facilities included

in the z/VM base product.

Overview

 z/VM: General Information, GC24-6095

 z/VM: Glossary, GC24-6097

 z/VM: License Information, GC24-6102

Installation, Migration, and

Service

 z/VM: Guide for Automated Installation and

Service, GC24-6099

 z/VM: Migration Guide, GC24-6103

 z/VM: Service Guide, GC24-6117

 z/VM: VMSES/E Introduction and Reference,

GC24-6130

Planning and Administration

 z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6074

 z/VM: CMS Planning and Administration,

SC24-6078

 z/VM: Connectivity, SC24-6080

 z/VM: CP Planning and Administration,

SC24-6083

 z/VM: Getting Started with Linux on System z9

and zSeries, SC24-6096

 z/VM: Group Control System, SC24-6098

z/VM: I/O Configuration, SC24-6100

 z/VM: Running Guest Operating Systems,

SC24-6115

 z/VM: Saved Segments Planning and

Administration, SC24-6116

 z/VM: TCP/IP Planning and Customization,

SC24-6125

 eServer zSeries 900: Planning for the Open

Systems Adapter-2 Feature, GA22-7477

 System z9 and eServer zSeries: Open

Systems Adapter-Express Customer’s Guide

and Reference, SA22-7935

 System z9 and eServer zSeries: Open

Systems Adapter-Express Integrated Console

Controller User’s Guide, SA22-7990

 z/OS and z/VM: Hardware Configuration

Manager User’s Guide, SC33-7989

Customization and Tuning

 z/VM: CP Exit Customization, SC24-6082

 z/VM: Performance, SC24-6109

Operation

 z/VM: System Operation, SC24-6121

 z/VM: Virtual Machine Operation, SC24-6128

Application Programming

 z/VM: CMS Application Development Guide,

SC24-6069

 z/VM: CMS Application Development Guide for

Assembler, SC24-6070

 z/VM: CMS Application Multitasking,

SC24-6071

 z/VM: CMS Callable Services Reference,

SC24-6072

 z/VM: CMS Macros and Functions Reference,

SC24-6075

 z/VM: CP Programming Services, SC24-6084

 z/VM: CPI Communications User’s Guide,

SC24-6085

 z/VM: Enterprise Systems

Architecture/Extended Configuration Principles

of Operation, SC24-6094

 z/VM: Language Environment User’s Guide,

SC24-6101

 z/VM: OpenExtensions Advanced Application

Programming Tools, SC24-6104

© Copyright IBM Corp. 1987, 2005 279

http://www.ibm.com/shop/publications/order/
http://www.ibm.com/eserver/zseries/zvm/library/

z/VM: OpenExtensions Callable Services

Reference, SC24-6105

 z/VM: OpenExtensions Commands Reference,

SC24-6106

 z/VM: OpenExtensions POSIX Conformance

Document, GC24-6107

 z/VM: OpenExtensions User’s Guide,

SC24-6108

 z/VM: Program Management Binder for CMS,

SC24-6110

 z/VM: Reusable Server Kernel Programmer’s

Guide and Reference, SC24-6112

 z/VM: REXX/VM Reference, SC24-6113

 z/VM: REXX/VM User’s Guide, SC24-6114

 z/VM: Systems Management Application

Programming, SC24-6122

 z/VM: TCP/IP Programmer’s Reference,

SC24-6126

 Common Programming Interface

Communications Reference, SC26-4399

 Common Programming Interface Resource

Recovery Reference, SC31-6821

 z/OS: Language Environment Concepts Guide,

SA22-7567

 z/OS: Language Environment Debugging

Guide, GA22-7560

 z/OS: Language Environment Programming

Guide, SA22-7561

 z/OS: Language Environment Programming

Reference, SA22-7562

 z/OS: Language Environment Run-Time

Messages, SA22-7566

 z/OS: Language Environment Writing ILC

Applications, SA22-7563

 z/OS MVS Program Management: Advanced

Facilities, SA22-7644

 z/OS MVS Program Management: User’s

Guide and Reference, SA22-7643

End Use

 z/VM: CMS Commands and Utilities

Reference, SC24-6073

 z/VM: CMS Pipelines Reference, SC24-6076

 z/VM: CMS Pipelines User’s Guide,

SC24-6077

 z/VM: CMS Primer, SC24-6137

 z/VM: CMS User’s Guide, SC24-6079

 z/VM: CP Commands and Utilities Reference,

SC24-6081

z/VM: Quick Reference, SC24-6111

 z/VM: TCP/IP User’s Guide, SC24-6127

 z/VM: XEDIT Commands and Macros

Reference, SC24-6131

 z/VM: XEDIT User’s Guide, SC24-6132

 CMS/TSO Pipelines Author’s Edition,

SL26-0018

System Diagnosis

 z/VM: CMS and REXX/VM Messages and

Codes, GC24-6118

 z/VM: CP Messages and Codes, GC24-6119

 z/VM: Diagnosis Guide, GC24-6092

 z/VM: Dump Viewing Facility, GC24-6093

 z/VM: Other Components Messages and

Codes, GC24-6120

 z/VM: TCP/IP Diagnosis Guide, GC24-6123

 z/VM: TCP/IP Messages and Codes,

GC24-6124

 z/VM: VM Dump Tool, GC24-6129

 z/OS and z/VM: Hardware Configuration

Definition Messages, SC33-7986

Books for z/VM Optional Features

The following books describe the optional features

of z/VM.

Data Facility Storage

Management Subsystem for VM

 z/VM: DFSMS/VM Customization, SC24-6086

 z/VM: DFSMS/VM Diagnosis Guide,

GC24-6087

 z/VM: DFSMS/VM Messages and Codes,

GC24-6088

 z/VM: DFSMS/VM Planning Guide, SC24-6089

 z/VM: DFSMS/VM Removable Media Services,

SC24-6090

 z/VM: DFSMS/VM Storage Administration,

SC24-6091

Directory Maintenance Facility

 z/VM: Directory Maintenance Facility

Commands Reference, SC24-6133

 z/VM: Directory Maintenance Facility

Messages, GC24-6134

 z/VM: Directory Maintenance Facility Tailoring

and Administration Guide, SC24-6135

280 z/VM: TCP/IP Diagnosis Guide

Performance Toolkit for VM™

 z/VM: Performance Toolkit, SC24-6136

Resource Access Control Facility

 External Security Interface (RACROUTE)

Macro Reference for MVS and VM,

GC28-1366

 Resource Access Control Facility: Auditor’s

Guide, SC28-1342

 Resource Access Control Facility: Command

Language Reference, SC28-0733

 Resource Access Control Facility: Diagnosis

Guide, GY28-1016

 Resource Access Control Facility: General

Information, GC28-0722

 Resource Access Control Facility: General

User’s Guide, SC28-1341

 Resource Access Control Facility: Macros and

Interfaces, SC28-1345

 Resource Access Control Facility: Messages

and Codes, SC38-1014

 Resource Access Control Facility: Migration

and Planning, GC23-3054

 Resource Access Control Facility: Security

Administrator’s Guide, SC28-1340

 Resource Access Control Facility: System

Programmer’s Guide, SC28-1343

Other TCP/IP Related

Publications

This section lists other publications, outside the

z/VM V5.2 library, that you may find helpful.

v TCP/IP Tutorial and Technical Overview,

GG24-3376

v TCP/IP Illustrated, Volume 1: The Protocols,

SR28-5586

v Internetworking with TCP/IP Volume I:

Principles, Protocols, and Architecture,

SC31-6144

v Internetworking With TCP/IP Volume II:

Implementation and Internals, SC31-6145

v Internetworking With TCP/IP Volume III:

Client-Server Programming and Applications,

SC31-6146

v DNS and BIND in a Nutshell, SR28-4970

v "MIB II Extends SNMP Interoperability," C.

Vanderberg, Data Communications, October

1990.

v "Network Management and the Design of

SNMP," J.D. Case, J.R. Davin, M.S. Fedor, M.L.

Schoffstall.

v "Network Management of TCP/IP Networks:

Present and Future," A. Ben-Artzi, A. Chandna,

V. Warrier.

v "Special Issue: Network Management and

Network Security,"ConneXions-The

Interoperability Report, Volume 4, No. 8, August

1990.

v The Art of Distributed Application: Programming

Techniques for Remote Procedure Calls, John

R. Corbin, Springer-Verlog, 1991.

v The Simple Book: An Introduction to

Management of TCP/IP-based Internets,

Marshall T Rose, Prentice Hall, Englewood

Cliffs, New Jersey, 1991.

Bibliography 281

282 z/VM: TCP/IP Diagnosis Guide

Index

Numerics
802.2 LLC frame 246

A
abend

described 4

problem category 4

abends
MPRoute 182

activating traces
directing output

to a file 51

to the screen 51

first-level trace 49

second-level trace 50

ALL process 99

applications, functions, and protocols
BOOTPD 235

DHCPD 239, 243

FTP 133

NFS 165

Remote Printing 211, 219

REXEC 221, 223

RouteD 167, 181

RPC 163, 167

SMTP 155, 163

Telnet 133

TFTP 225, 227

TFTPD 235

ARP
frame 247

process 31, 52, 54

attacks, denial-of-service (DOS) 61

B
Blat attack 61

BOOTPD
client traces

trace output 235, 239

C
CCS

process 54

role in VM structure 15

CCW
general information 246

matching traces with TCP/IP traces 250

samples of CCW traces 246, 250

CLAW trace process 55

commands
DUMP 9

PORT 133

VMDUMP 9

VMFPLC2 9

commonly used trace options 106

congestion process 59, 106

CONNECT request 40

Connection States
as know by Pascal/VMCF applications 114

as know by socket applications 115

as know by TCP 112

CONSISTENCYCHECKER process 31, 59

CTCP 47

D
Data Transfer Process (DTP) 133

DDN1822 process 31

DEBUG,
FTP subcommand 134

NFS subcommand 205

debugging
in VM

executing traces 49

denial-of-service (DOS) attacks 61

diagnostic task
Step 1. Does the problem originate from TCP/IP 1

Step 2. Try to fix the problem 2

Step 3. Describe the problem using categories
abend 4

documentation 8

incorrect output 6

loop 5

message 4

performance 7

wait state 6

Step 4. Reporting the problem to Service Support 2

Step 5. Implement the solution 2

directing output
to a file 51

to the screen 51

documentation problems 8

Dump Viewing Facility 9

E
EREP 45, 46, 47

error return codes
UDP 252

EXTERNALHANDLER process 99

F
FILE DEBUGTRA file 140

FILE statement 51

first-level trace 49

Fraggle attack 61

frame
802.2 LLC 246

ARP 247

IP 249

© Copyright IBM Corp. 1987, 2005 283

frame (continued)
TCP 249

token-ring 245

FROM1822 process 31

FTP
client traces

activating traces 134

trace output 135

connection 133

DEBUG subcommand 134

DTP 133

model 133

PI 133

PORT command 133

server traces
activating traces 139

trace output 140

FTPSERVE LOG file 140

G
GATEWAY statement 44

use with MPRoute 181

glossary information 261

group processes
ALL 99

HANDLERS 99

HCH 99

IUCV 100, 102

PCCA 102, 106

RAWIP 106

TCP 106

TCPIP 106

UDP 106

H
HANDLERS process 99

HCH process 99

header
IP 249

TCP 249

HYPERchannel
driver

described 38, 39

failure 45, 46

packet-blocking 39

SLS/720 datagram 39

I
I/O

HYPERchannel driver 38, 39

IUCV links
PVM IUCV 39

SNA IUCV 40, 46

IBM 8232 38

ICMP process 62, 100

IGMP process 63

IMAP
component flow 145

IMAP (continued)
Diagnosing problems 145

Reason Codes 152

trace output 146

incorrect output problems 6

INITIALIZE process 63, 65

internal
activities 34, 38

procedures 31, 33

queues 33, 34

internal tracing statements
FILE 51

in TCPIP.PROFILE.TCPIP 49

LESSTRACE 51, 52, 99

MORETRACE 50, 52, 99

NOTRACE 50, 52, 99

SCREEN 51

TRACE 49, 52, 99

Internet
protocols, ICMP 100

IOHANDLER process 99

IP
frame 249

header 249

IPDOWN process 31, 65, 106

IPFORMAT 118

IPREQUEST process 106

IPUP process 31, 66, 106

IUCV
links

PVM 39

SNA 40, 46

process 100, 102

role in VM structure 15

trace output 100

IUCVHANDLER process 99

K
Kiss-of-Death (KOD) attack 61

KOX attack 61

L
LAN

messages 245

support devices for 243

Land attack 61

LDSF
role in VM structure 15

LESSTRACE statement 51, 52, 99

LLC 246

loop problems 5

M
machine readable documentation guidelines 9

message problems 4

MONITOR process 31, 66, 68

MORETRACE statement 50, 52, 99

284 z/VM: TCP/IP Diagnosis Guide

MPRoute
abends 182

client cannot reach destination 182

connection problems 182

overview 181

MULTICAST process 68, 69

N
netstat command

MPRoute problem diagnosis 182

NetView 45, 46, 47

NFS
activating traces 205

function 165

trace output 207

NOPROCESS process 69

NOTIFY process 31, 69, 71, 106

NOTRACE statement 50, 52, 99

O
OBEYFILE 49, 71

open shortest path first (OSPF) 181

OSD process 71

OSPF (open shortest path first) 181

output,
directing to a file 51

directing to the screen 51

problem category 6

P
PARSE-TCP process 71

Pascal 31, 33

PCCA
CCW

general information 246

matching traces with TCP/IP traces 250

samples of CCW traces 246, 250

devices 243, 250

PCCA block structure
802.2 LLC frame 246

control messages 244

general information 243

information about token-ring frames 245

LAN messages 245

process 102, 106

performance problems 7

PING command 44

PING process 44

Ping-o-Death attack 61

PORT command 133

Portmapper 166

problem categories
abend 4

documentation 8

incorrect output 6

loop 5

message 4

performance 7

problem categories (continued)
wait state 6

processes
group

ALL 99

HANDLERS 99

HCH 99

IUCV 100, 102

PCCA 102, 106

RAWIP 106

TCP 106

TCPIP 106

UDP 106

single
ARP 31, 52, 54

CCS 54

CONGESTION 59, 106

CONSISTENCYCHECKER 31, 59

DDN1822 31

EXTERNALHANDLER 99

FROM1822 31

ICMP 62, 100

IGMP 63

INITIALIZE 63, 65

IOHANDLER 99

IPDOWN 31, 65, 106

IPREQUEST 106

IPUP 31, 66, 106

IUCVHANDLER 99

MONITOR 31, 66, 68

MULTICAST 68, 69

NOPROCESS 69

NOTIFY 31, 69, 71, 106

OSD 71

PARSE-TCP 71

PING 72, 100

QDIO 73

RAWIPREQUEST 31, 106

RAWIPUP 106

RETRANSMIT 106

REXMIT 106

ROUNDTRIP 73, 106

SCHEDULER 31, 74, 76

SHUTDOWN 31, 76

SNMPDPI 77

SOCKET 77

STATUSOUT 31

TCPDOWN 31, 79, 80, 106

TCPREQUEST 31, 84, 87, 106

TCPUP 31, 80, 84, 106

TELNET 87, 94

TIMER 31, 94

TO1822 31

TOIUCV 31

UDPREQUEST 31, 96, 106

UDPUP 98, 106

PROFILE TCPIP 49, 72

Protocol Interpreter (PI) 133

Pseudo-state, connection
CONNECTIONclosing 114

LISTENING 114

Index 285

Pseudo-state, connection (continued)
NONEXISTENT 115

OPEN 114

RECEIVINGonly 114

SENDINGonly 114

TRYINGtoOPEN 114

PVM
CONNECT request 40

local 40

remote 40

Q
QDIO process 73

queues 33, 34

R
R4P3D attack 61

RAWIP process 106

RAWIPREQUEST process 31, 106

RAWIPUP process 106

related protocols 253

remote printing
client traces

activating traces 211

trace output 211

server traces
activating traces 215

trace output 215

RETRANSMIT process 106

return codes
TCP/IP 251

UDP Error 252

REXEC
activating traces 221

trace output 221

REXECD
activating traces 222

trace output 223

REXMIT process 106

RIP (routing information protocol)
MPRoute implementation 181

ROUNDTRIP process 73, 106

RouteD
diagnosing problems 169

trace output 175

traces and debug information 172

routing information protocol (RIP)
MPRoute implementation 181

RPC programs
call messages 163

function 163

Portmapper 166

reply messages
accepted 164

rejected 165

support 166

S
SCHEDULER process 31, 74, 76

SCREEN statement 51

second-level trace 50

SHUTDOWN process 31, 76

SMSG command
with MPRoute 183

SMTP
client traces

activating traces 155

querying SMTP queues 155

server traces
activating traces 156

commands 156

Smurf-IC attack 61

Smurf-OB attack 61

Smurf-RP attack 61

SNA
CONNECT request 40

IUCV failure 46, 49

SNMPDPI process 77

SOCKET process 77

SSL
Diagnosing problems 191

trace output 198

SSLADMIN TRACE/NOTRACE command 194

state, connection
CLOSE-WAIT 113

CLOSED 114

CLOSING 113

ESTABLISHED 112

FIN-WAIT-1 113

FIN-WAIT-2 113

LAST-ACK 113

LISTEN 112

SYN-RECEIVED 112

SYN-SENT 112

TIME-WAIT 113

statements
FILE 51

GATEWAY 44

LESSTRACE 51, 52, 99

MORETRACE 50, 52, 99

NOTRACE 50, 52, 99

SCREEN 51

TRACE 47, 52, 99

STATUSOUT process 31

Stream attack 61

Synflood attack 61

T
TCP

frame 249

header 249

process 106

TCP/IP
internal

activities 34, 38

procedures 31, 33

286 z/VM: TCP/IP Diagnosis Guide

TCP/IP (continued)
internal (continued)

queues 33, 34

matching traces with CCW traces 250

nodes, failure to connect 43, 45

return codes 251

TCPDOWN process 31, 79, 80, 106

TCPIP
process 106

TCPIPX25 47

TCPREQUEST process 31, 84, 87, 106

TCPUP process 31, 80, 84, 106

TCTOA22 38

TCTOPC3 38

Telnet
failure to connect 43, 45

process 87, 94

TFTP
client traces

trace output 225

TFTPD
client traces

activating traces 225, 227, 235, 239

TIMER process 31, 94

TO1822 process 31

TOIUCV process 31

token-ring 245

trace
DHCPD 239, 243

first-level 49

FTP
client 134, 139

server 139

IUCV 100

remote printing 211, 219

REXEC 221, 222

REXECD 222, 223

RouteD 167, 181

second-level 50

SMTP
client 155, 156

server 156, 163

TCPIP 106

Telnet 87

TFTP 225, 227

TFTPD 235

TRACE statement 47, 49, 52, 99

TRACERTE command 115

U
UDP

error return codes 252

UDPREQUEST process 31, 96, 106

UDPUP process 98, 106

V
virtual machines 13

VM
debugging

executing traces 49

structure
CCS and LDSF 15

IUCV 15

virtual machines 13

VMCF 14

VMCF
role in VM structure 14

VMSSL command
Command Format 194

W
wait state problems 6

worksheet for reporting problems 12

X
X.25 NPSI

configuration 46, 47

GATE 47

Index 287

288 z/VM: TCP/IP Diagnosis Guide

Readers’ Comments — We’d Like to Hear from You

z/VM

TCP/IP Diagnosis Guide

version 5 release 2

 Publication No. GC24-6123-01

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 GC24-6123-01

GC24-6123-01

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, New York 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5741-A05

Printed in USA

GC24-6123-01

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

z/
V

M

T
C

P
/I

P

D

ia
gn

os
is

G

ui
de

ve

rs
io

n
5

re
le

as
e

2

	Contents
	About This Book
	Who Should Read This Book
	How To Use This Book
	How Numbers Are Used in This Document
	How the Term “internet” Is Used in This Document

	How to Read Syntax Diagrams
	What This Book Contains
	Where to Find More Information
	How to Send Your Comments to IBM

	Summary of Changes
	GC24-6123-01, z/VM Version 5 Release 2
	GC24-6123-00, z/VM Version 5 Release 1
	GC24-6023-02, z/VM Version 4 Release 4
	Networking support

	GC24-6023-01, z/VM Version 4 Release 4
	Equal-cost multipath support
	TCP/IP Stack Vulnerability Reduction

	Chapter 1. Diagnosis Overview
	Chapter 2. Problem Identification
	Categories that Help Identify the Problem
	Abend
	Gather the Information
	Document the Problem

	Message
	Gather the Information
	Document the Problem

	Loop
	Gather the Information
	Document the Problem

	Wait State
	Gather the Information
	Document the Problem

	Incorrect Output
	Gather the Information
	Document the Problem

	Performance
	Gather the Information
	Document the Problem

	Documentation
	Gather the Information
	Document the Problem

	Guidelines for Machine Readable Documentation
	Necessary Documentation
	Additional Documentation
	Problem Resolution
	Severe Problem Resolution

	Customer Worksheet
	Problem Category
	Background Information
	Additional Information

	Chapter 3. TCP/IP VM Structures and Internetworking Overview
	VM Structure
	Virtual Machines
	Virtual Machine Communication Facility
	Inter-User Communication Vehicle
	*CCS and Logical Device Service Facility
	Overview of Internetworking
	Bridges
	Maximum Transmission Unit (MTU)
	Token Ring IEEE 802.5
	IEEE 802.3
	Ethernet - DIX V2
	Sub-Network Access Protocol (SNAP)
	Internet Addressing
	IPv4 Addressing
	IPv6 Addressing
	IP Routing

	Direct Routing
	Indirect Routing
	Simplified IP Datagram Routing Algorithm
	Subnetting
	Simplified IP Datagram Routing Algorithm with Subnets
	Static Routing
	Dynamic Routing
	Dynamic Routing Tables
	Example of Network Connectivity

	Chapter 4. Server Initialization
	CMS Servers
	Diagnosis Method 1
	Diagnosis Method 2

	GCS Servers

	Chapter 5. TCP/IP Procedures
	TCP/IP Internals
	Internal Procedures
	Queues
	Internal Activities

	Input/Output
	HYPERchannel Driver
	IUCV Links
	PVM IUCV
	SNA IUCV

	Chapter 6. Diagnosing the Problem
	Unable to Connect to TCP/IP Node
	Description of the Problem
	Symptom
	Problem Determination
	PING—Sending an Echo Request to a Foreign Host
	PING Command

	Resolving the PING Command Problems

	Failure of the HYPERchannel Interface
	Description of the Problem
	Symptom
	Problem Determination
	Recovery

	Failure of an SNA IUCV Connection
	Description of the Problem
	Symptom
	Problem Determination
	Session Error
	Hardware Failure

	Recovery

	Chapter 7. TCP/IP Traces
	Debugging in VM
	Executing Traces
	Activating Traces
	First-Level Trace
	Second-Level Trace
	Directing Output
	Output Directed to a File
	Output Directed to the Screen

	Process Names
	Single Process Names
	ARP
	CCS
	CLAW Trace Information
	Congestion
	CONSISTENCYCHECKER or CONSISTENCY_CHECKER
	DENIALOFSERVICE
	ICMP
	IGMP
	INITIALIZE
	IPDOWN or IP-DOWN
	IPUP or IP-UP
	MONITOR
	MULTICAST
	NOPROCESS or NO-PROCESS or NONE
	NOTIFY
	OSD
	PARSE-TCP
	PING
	QDIO
	ROUNDTRIP or ROUND-TRIP
	SCHEDULER
	SHUTDOWN or SHUT-DOWN
	SNMPDPI
	SOCKET
	SSL
	TCPDOWN or TCP-DOWN
	TCPUP or TCP-UP
	TCPREQUEST or TCP-REQUEST
	TELNET
	TIMER
	UDPREQUEST
	UDPUP

	Group Process Names
	ALL
	HANDLERS
	HCH
	IUCV
	PCCA
	RAWIP
	TCP
	TCPIP or TCP-IP
	UDP

	Commonly Used Trace Options
	Connection State
	Connection State As Known by TCP
	Connection State As Known by Pascal or VMCF Applications
	Connection State As Known by Socket Applications

	Traceroute Function (TRACERTE)

	Chapter 8. Using IPFORMAT Packet Trace Formatting Tool
	IPFORMAT Command Overview
	IPFORMAT Command
	IPFORMAT Configuration File
	Using IPFORMAT to View Packet Data
	The Packet Summary View
	The Packet Detail View

	IPFORMAT VIEW Function Keys
	Packet Summary PF Keys
	Packet Detail PF Keys

	IPFORMAT Subcommands
	FILTER Subcommand
	VIEW Subcommand
	HEADER Subcommand
	SAVE Subcommand
	APPEND Subcommand

	Chapter 9. FTP Traces
	FTP Connection
	FTP Client Traces
	Activating Traces
	Trace Output

	FTP Server Traces
	Activating Traces
	Trace Output

	Chapter 10. IMAP Server Diagnosis
	IMAP Mail Flow
	Invoking Trace Activity on the IMAP Server

	Trace Output
	Trace CODEFLOW
	Administrative Console
	IMAP Server Console

	Trace SOCKLIBCALLS
	Administrative Console
	IMAP Server Console

	Trace SOCKETIO
	Administrative Console
	IMAP Server Console

	Diagnosing Problems
	Problem - IMAP server fails during initialization with the following message: DTCIMP5008E Error on socket call: PS_bind rc=13
	Cause
	Action

	Problem - Error 32 on socket call PS_write when a client disconnects
	Cause
	Action

	Problem - Administrator command times out and Error QueueReplying to a request: rc=8, rs=207 is displayed on the server's console when the command completes
	Cause
	Action

	Problem - Clients attempt to connect to the IMAP server, and the server never responds
	Cause
	Action

	Problem - Error connecting to *SPL
	Cause
	Action

	Problem - Error rc=8 rs=11 on PS_applinit call
	Cause
	Action

	Problem - The IMAP server could not be started
	Documentation
	Action

	Problem - The IMAP server is restarted by the stack at regular intervals
	Documentation
	Action

	Reason Codes for Mail Sent to BADFILEID

	Chapter 11. Simple Mail Transfer Protocol Traces
	SMTP Client Traces
	Activating Traces
	Obtaining Queue Information

	SMTP Server Traces
	Activating Traces
	SMTP Commands
	Sample Debug Trace
	Sample LOG Information
	Sample Resolver Trace
	Sample Notification Trace
	Sample Connection Activity Trace

	Chapter 12. RPC Programs
	General Information about RPC
	RPC Call Messages
	RPC Reply Messages
	Accepted Reply Messages
	Rejected Reply Messages

	RPC Support
	Portmapper
	Portmapper Procedures

	Chapter 13. RouteD Diagnosis
	Incoming Datagram RouteD Processing
	Outgoing Datagram RouteD Generation
	RouteD Route Table and Interface List

	Diagnosing Problems
	Connection Problems
	Documentation
	Analysis

	PING Failures
	Documentation
	Analysis

	Incorrect Output
	Documentation
	Analysis

	Session Outages
	Documentation
	Analysis

	Activating RouteD Trace and Debug
	RouteD Trace and Debug Commands
	Purpose
	Operands
	Usage Notes
	RouteD Trace and Debug SMSG Commands
	Purpose
	Operands
	Usage Notes
	Examples

	Trace Output

	Chapter 14. Diagnosing MPRoute Problems
	Categorizing MPRoute Problems
	Abends
	MPRoute Connection Problems
	Routing Failures
	Documenting Routing Failures
	Guidelines for Analyzing Routing Failures

	Using Privileged MPRoute SMSG Commands
	MPRoute Traces and Debug Information
	Starting MPRoute Tracing and Debugging from the z/VM Console
	Starting MPRoute Tracing and Debugging using the SMSG Command
	Destination of MPRoute Trace and Debug Output
	Sample MPRoute Trace Output

	Chapter 15. SSL Server Diagnosis
	SSL component Flow
	Invoking Trace Activity on the SSL Server
	VMSSL Command
	SSLADMIN TRACE/NOTRACE Command

	Diagnosing Problems
	Symptom - The SSL server could not be started
	Documentation
	Analysis

	Symptom - The SSL server is restarted by the stack at regular intervals
	Documentation
	Analysis

	Symptom - The correct parameters are not being passed to the SSL server
	Documentation
	Analysis

	Symptom - The inability to connect to an application server listening on a secure port
	Documentation
	Analysis

	Symptom - Connections close due to errors
	Documentation
	Analysis

	Symptom - Incorrect input or output
	Documentation
	Analysis

	Trace Output
	Trace Normal
	Administrative Console
	SSL Server Console
	Explanation

	Trace Connections NODATA
	Administrative Console
	SSL Server Console
	Explanation

	Trace Connections DATA
	Administrative Console
	SSL Server Console
	Explanation

	Trace FLOW
	Administrative Console
	SSL Server Console
	Explanation

	Displaying Local Host Information
	Explanation

	Chapter 16. Network File System
	VM NFS Client Support
	Activating Traces for NFS Client

	VM NFS Server Support
	NFS Protocol
	Mount Protocol
	PCNFSD Protocol
	General NFS Debugging Features
	Activating Traces for NFS Server
	Additional Trace Options
	Trace Tables
	Trace Output

	Chapter 17. Remote Printing Traces
	Remote Printing Client Traces
	Activating Remote Printing Client Traces
	Remote Printing Client Trace Output
	Remote Printing Server Traces
	Activating Remote Printing Server Traces
	Remote Printing Server Trace Output

	Chapter 18. Remote Execution Protocol Traces
	Remote Execution Protocol Client Traces
	Activating Remote Execution Protocol Client Traces
	Remote Execution Protocol Client Trace Output
	Remote Execution Protocol Server Traces
	Activating Remote Execution Protocol Server Traces
	Remote Execution Protocol Server Trace Output

	Chapter 19. TFTP Client Traces
	Activating Traces
	Trace Output

	Chapter 20. TFTPD Traces
	Activating Traces
	Trace Output
	Formats of TFTPD Trace Records
	TFTPD Trace Codes:

	TFTPD Trace Entry: 1000
	TFTPD Trace Entry: 1500
	TFTPD Trace Entry: 2000
	TFTPD Trace Entry: 2500
	TFTPD Trace Entry: 3000
	TFTPD Trace Entry: 3500
	TFTPD Trace Entry: 4000
	TFTPD Trace Entry: 4100
	TFTPD Trace Entry: 4200
	TFTPD Trace Entry: 4300
	TFTPD Trace Entry: 5000
	TFTPD Trace Entry: 5100
	TFTPD Trace Entry: 5200
	TFTPD Trace Entry: 6100
	TFTPD Trace Entry: 6200
	TFTPD Trace Entry: 6300
	TFTPD Trace Entry: 6301
	TFTPD Trace Entry: 6302
	TFTPD Trace Entry: 6303
	TFTPD Trace Entry: 6304
	TFTPD Trace Entry: 6305

	Chapter 21. BOOT Protocol Daemon (BOOTPD) Traces
	Activating Traces
	Trace Output
	BOOTPD Trace Records
	BOOTPD Trace Record Format
	BOOTPD Trace Codes

	Chapter 22. Dynamic Host Configuration Protocol Daemon (DHCPD) Traces
	Activating Traces
	Trace Output
	DHCPD Trace Records
	DHCPD Trace Record Format
	DHCPD Trace Codes

	Chapter 23. Hardware Trace Functions
	PCCA Devices
	PCCA Block Structure
	Control Messages
	LAN Messages
	Token-Ring Frames
	802.2 LLC Frame

	CCW
	Samples of CCW Traces

	Matching CCW Traces and TCP/IP Traces

	Appendix A. Return Codes
	TCP/IP Return Codes
	UDP Error Return Codes

	Appendix B. Related Protocol Specifications
	Notices
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Books
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation
	Application Programming
	End Use
	System Diagnosis

	Books for z/VM Optional Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility
	Performance Toolkit for VM™
	Resource Access Control Facility

	Other TCP/IP Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

